How Good Are Current Docking Programs at Nucleic Acid–Ligand Docking? A Comprehensive Evaluation

对接(动物) 自动停靠 蛋白质-配体对接 码头 寻找对接的构象空间 配体(生物化学) 药物发现 计算生物学 化学 结合位点 小分子 核酸 立体化学 组合化学 计算机科学 虚拟筛选 生物化学 生物 生物信息学 受体 医学 护理部 基因
作者
Dejun Jiang,Huifeng Zhao,Hongyan Du,Yafeng Deng,Zhenhua Wu,Jike Wang,Yundian Zeng,Haotian Zhang,Xiaorui Wang,Jian Wu,Chang‐Yu Hsieh,Tingjun Hou
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:19 (16): 5633-5647 被引量:25
标识
DOI:10.1021/acs.jctc.3c00507
摘要

Nucleic acid (NA)-ligand interactions are of paramount importance in a variety of biological processes, including cellular reproduction and protein biosynthesis, and therefore, NAs have been broadly recognized as potential drug targets. Understanding NA-ligand interactions at the atomic scale is essential for investigating the molecular mechanism and further assisting in NA-targeted drug discovery. Molecular docking is one of the predominant computational approaches for predicting the interactions between NAs and small molecules. Despite the availability of versatile docking programs, their performance profiles for NA-ligand complexes have not been thoroughly characterized. In this study, we first compiled the largest structure-based NA-ligand binding data set to date, containing 800 noncovalent NA-ligand complexes with clearly identified ligands. Based on this extensive data set, eight frequently used docking programs, including six protein-ligand docking programs (LeDock, Surflex-Dock, UCSF Dock6, AutoDock, AutoDock Vina, and PLANTS) and two specific NA-ligand docking programs (rDock and RLDOCK), were systematically evaluated in terms of binding pose and binding affinity predictions. The results demonstrated that some protein-ligand docking programs, specifically PLANTS and LeDock, produced more promising or comparable results compared with the specialized NA-ligand docking programs. Among the programs evaluated, PLANTS, rDock, and LeDock showed the highest performance in binding pose prediction, and their top-1 and best root-mean-square deviation (rmsd) success rates were as follows: PLANTS (35.93 and 76.05%), rDock (27.25 and 72.16%), and LeDock (27.40 and 64.37%). Compared with the moderate level of binding pose prediction, few programs were successful in binding affinity prediction, and the best correlation (Rp = -0.461) was observed with PLANTS. Finally, further comparison with the latest NA-ligand docking program (NLDock) on four well-established data sets revealed that PLANTS and LeDock outperformed NLDock in terms of binding pose prediction on all data sets, demonstrating their significant potential for NA-ligand docking. To the best of our knowledge, this study is the most comprehensive evaluation of popular molecular docking programs for NA-ligand systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rwmqwq发布了新的文献求助10
刚刚
changping应助qin采纳,获得10
刚刚
葫芦娃发布了新的文献求助10
2秒前
bkagyin应助zxm采纳,获得10
3秒前
zhujun发布了新的文献求助30
3秒前
ajing完成签到,获得积分10
5秒前
Jasper应助帅哥吴克采纳,获得10
5秒前
11秒前
文艺鞋垫完成签到,获得积分10
11秒前
科研小牛马关注了科研通微信公众号
12秒前
葫芦娃完成签到,获得积分10
14秒前
14秒前
FashionBoy应助Rwmqwq采纳,获得10
16秒前
16秒前
17秒前
天天快乐应助香蕉凛采纳,获得10
18秒前
ZH完成签到 ,获得积分10
18秒前
CodeCraft应助Rena采纳,获得10
19秒前
虚心天亦发布了新的文献求助10
20秒前
弗洛伊德的梦完成签到,获得积分10
20秒前
Li发布了新的文献求助10
20秒前
21秒前
21秒前
小畅完成签到,获得积分10
22秒前
22秒前
23秒前
帅哥吴克发布了新的文献求助10
24秒前
24秒前
wlscj应助2214采纳,获得20
26秒前
Rwmqwq完成签到,获得积分10
27秒前
芯止谭轩发布了新的文献求助10
27秒前
2335538742完成签到,获得积分10
28秒前
搜集达人应助渴望者采纳,获得10
28秒前
28秒前
李健应助震千筹采纳,获得10
30秒前
30秒前
可耐的万言完成签到 ,获得积分10
31秒前
盛夏如花发布了新的文献求助10
32秒前
今后应助Hoshi采纳,获得10
33秒前
财神爷独生女完成签到 ,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298783
求助须知:如何正确求助?哪些是违规求助? 4447268
关于积分的说明 13841970
捐赠科研通 4332744
什么是DOI,文献DOI怎么找? 2378323
邀请新用户注册赠送积分活动 1373613
关于科研通互助平台的介绍 1339188