How Good Are Current Docking Programs at Nucleic Acid–Ligand Docking? A Comprehensive Evaluation

对接(动物) 自动停靠 蛋白质-配体对接 码头 寻找对接的构象空间 配体(生物化学) 药物发现 计算生物学 化学 结合位点 小分子 核酸 立体化学 组合化学 计算机科学 虚拟筛选 生物化学 生物 生物信息学 受体 基因 医学 护理部
作者
Dejun Jiang,Huifeng Zhao,Hongyan Du,Yafeng Deng,Zhenhua Wu,Jike Wang,Yundian Zeng,Haotian Zhang,Xiaorui Wang,Jian Wu,Chang‐Yu Hsieh,Tingjun Hou
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:19 (16): 5633-5647 被引量:32
标识
DOI:10.1021/acs.jctc.3c00507
摘要

Nucleic acid (NA)-ligand interactions are of paramount importance in a variety of biological processes, including cellular reproduction and protein biosynthesis, and therefore, NAs have been broadly recognized as potential drug targets. Understanding NA-ligand interactions at the atomic scale is essential for investigating the molecular mechanism and further assisting in NA-targeted drug discovery. Molecular docking is one of the predominant computational approaches for predicting the interactions between NAs and small molecules. Despite the availability of versatile docking programs, their performance profiles for NA-ligand complexes have not been thoroughly characterized. In this study, we first compiled the largest structure-based NA-ligand binding data set to date, containing 800 noncovalent NA-ligand complexes with clearly identified ligands. Based on this extensive data set, eight frequently used docking programs, including six protein-ligand docking programs (LeDock, Surflex-Dock, UCSF Dock6, AutoDock, AutoDock Vina, and PLANTS) and two specific NA-ligand docking programs (rDock and RLDOCK), were systematically evaluated in terms of binding pose and binding affinity predictions. The results demonstrated that some protein-ligand docking programs, specifically PLANTS and LeDock, produced more promising or comparable results compared with the specialized NA-ligand docking programs. Among the programs evaluated, PLANTS, rDock, and LeDock showed the highest performance in binding pose prediction, and their top-1 and best root-mean-square deviation (rmsd) success rates were as follows: PLANTS (35.93 and 76.05%), rDock (27.25 and 72.16%), and LeDock (27.40 and 64.37%). Compared with the moderate level of binding pose prediction, few programs were successful in binding affinity prediction, and the best correlation (Rp = -0.461) was observed with PLANTS. Finally, further comparison with the latest NA-ligand docking program (NLDock) on four well-established data sets revealed that PLANTS and LeDock outperformed NLDock in terms of binding pose prediction on all data sets, demonstrating their significant potential for NA-ligand docking. To the best of our knowledge, this study is the most comprehensive evaluation of popular molecular docking programs for NA-ligand systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
兴奋芷完成签到,获得积分10
刚刚
1秒前
曾经的借过完成签到,获得积分10
1秒前
搜集达人应助Sixth_GOD采纳,获得10
1秒前
量子星尘发布了新的文献求助30
1秒前
迷路凌柏发布了新的文献求助10
1秒前
Renee完成签到 ,获得积分10
1秒前
若槻椋完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
zmjjkk发布了新的文献求助10
2秒前
莫默发布了新的文献求助10
2秒前
2秒前
科研通AI2S应助bingsu108采纳,获得10
3秒前
haaaaaa发布了新的文献求助10
4秒前
Snow发布了新的文献求助10
5秒前
陶玲完成签到,获得积分10
6秒前
6秒前
JUri发布了新的文献求助10
7秒前
haiyan关注了科研通微信公众号
7秒前
medaW发布了新的文献求助10
7秒前
包子完成签到,获得积分20
7秒前
tonyfountain发布了新的文献求助10
7秒前
7秒前
标致忆丹完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
我嘞个逗发布了新的文献求助10
8秒前
9秒前
香蕉觅云应助丽莎采纳,获得10
9秒前
spc68应助明天会早睡的采纳,获得10
10秒前
10秒前
陶玲发布了新的文献求助10
10秒前
苹果的苹发布了新的文献求助10
10秒前
茉行完成签到,获得积分10
10秒前
迷路的芝麻完成签到,获得积分10
10秒前
cxy3311完成签到,获得积分10
11秒前
若空行走完成签到,获得积分10
11秒前
华仔应助HAOHAO采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718472
求助须知:如何正确求助?哪些是违规求助? 5252894
关于积分的说明 15285900
捐赠科研通 4868646
什么是DOI,文献DOI怎么找? 2614347
邀请新用户注册赠送积分活动 1564180
关于科研通互助平台的介绍 1521729