亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

How Good Are Current Docking Programs at Nucleic Acid–Ligand Docking? A Comprehensive Evaluation

对接(动物) 自动停靠 蛋白质-配体对接 码头 寻找对接的构象空间 配体(生物化学) 药物发现 计算生物学 化学 结合位点 小分子 核酸 立体化学 组合化学 计算机科学 虚拟筛选 生物化学 生物 生物信息学 受体 医学 护理部 基因
作者
Dejun Jiang,Huifeng Zhao,Hongyan Du,Yafeng Deng,Zhenhua Wu,Jike Wang,Yundian Zeng,Haotian Zhang,Xiaorui Wang,Jian Wu,Chang‐Yu Hsieh,Tingjun Hou
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:19 (16): 5633-5647 被引量:25
标识
DOI:10.1021/acs.jctc.3c00507
摘要

Nucleic acid (NA)-ligand interactions are of paramount importance in a variety of biological processes, including cellular reproduction and protein biosynthesis, and therefore, NAs have been broadly recognized as potential drug targets. Understanding NA-ligand interactions at the atomic scale is essential for investigating the molecular mechanism and further assisting in NA-targeted drug discovery. Molecular docking is one of the predominant computational approaches for predicting the interactions between NAs and small molecules. Despite the availability of versatile docking programs, their performance profiles for NA-ligand complexes have not been thoroughly characterized. In this study, we first compiled the largest structure-based NA-ligand binding data set to date, containing 800 noncovalent NA-ligand complexes with clearly identified ligands. Based on this extensive data set, eight frequently used docking programs, including six protein-ligand docking programs (LeDock, Surflex-Dock, UCSF Dock6, AutoDock, AutoDock Vina, and PLANTS) and two specific NA-ligand docking programs (rDock and RLDOCK), were systematically evaluated in terms of binding pose and binding affinity predictions. The results demonstrated that some protein-ligand docking programs, specifically PLANTS and LeDock, produced more promising or comparable results compared with the specialized NA-ligand docking programs. Among the programs evaluated, PLANTS, rDock, and LeDock showed the highest performance in binding pose prediction, and their top-1 and best root-mean-square deviation (rmsd) success rates were as follows: PLANTS (35.93 and 76.05%), rDock (27.25 and 72.16%), and LeDock (27.40 and 64.37%). Compared with the moderate level of binding pose prediction, few programs were successful in binding affinity prediction, and the best correlation (Rp = -0.461) was observed with PLANTS. Finally, further comparison with the latest NA-ligand docking program (NLDock) on four well-established data sets revealed that PLANTS and LeDock outperformed NLDock in terms of binding pose prediction on all data sets, demonstrating their significant potential for NA-ligand docking. To the best of our knowledge, this study is the most comprehensive evaluation of popular molecular docking programs for NA-ligand systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
33秒前
39秒前
Akim应助星尘0314采纳,获得10
50秒前
ZJY完成签到 ,获得积分10
50秒前
科研小南完成签到 ,获得积分10
54秒前
Jason完成签到,获得积分10
57秒前
慕青应助科研通管家采纳,获得10
59秒前
ZanE完成签到,获得积分10
1分钟前
Jiang完成签到,获得积分20
1分钟前
Jason发布了新的文献求助10
1分钟前
谦让的鱼完成签到,获得积分10
1分钟前
catherine完成签到,获得积分10
1分钟前
大个应助Pursork采纳,获得10
2分钟前
PeterDeng完成签到,获得积分10
2分钟前
领导范儿应助fveie采纳,获得10
2分钟前
浮游应助今年花生去年红采纳,获得10
2分钟前
2分钟前
Pursork发布了新的文献求助10
2分钟前
科目三应助小圭采纳,获得10
2分钟前
小蘑菇应助朴素难敌采纳,获得30
2分钟前
2分钟前
3分钟前
3分钟前
科研通AI6应助转转王转转采纳,获得10
3分钟前
GRG完成签到 ,获得积分0
3分钟前
Wj发布了新的文献求助10
3分钟前
所所应助Wj采纳,获得10
4分钟前
4分钟前
朴素难敌发布了新的文献求助30
4分钟前
4分钟前
usora发布了新的文献求助10
5分钟前
usora完成签到,获得积分10
5分钟前
5分钟前
Auralis完成签到 ,获得积分10
5分钟前
朴素难敌完成签到,获得积分10
5分钟前
6分钟前
丸子完成签到 ,获得积分10
6分钟前
6分钟前
五五完成签到 ,获得积分10
6分钟前
小圭发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5459158
求助须知:如何正确求助?哪些是违规求助? 4564898
关于积分的说明 14297299
捐赠科研通 4489983
什么是DOI,文献DOI怎么找? 2459484
邀请新用户注册赠送积分活动 1449127
关于科研通互助平台的介绍 1424596