How Good Are Current Docking Programs at Nucleic Acid–Ligand Docking? A Comprehensive Evaluation

对接(动物) 自动停靠 蛋白质-配体对接 码头 寻找对接的构象空间 配体(生物化学) 药物发现 计算生物学 化学 结合位点 小分子 核酸 立体化学 组合化学 计算机科学 虚拟筛选 生物化学 生物 生物信息学 受体 医学 护理部 基因
作者
Dejun Jiang,Haijian Zhao,Hongyan Du,Yafeng Deng,Zhenxing Wu,Jike Wang,Yiyu Zeng,Haotian Zhang,Xiaorui Wang,Jian Wu,Chang‐Yu Hsieh,Tingjun Hou
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:19 (16): 5633-5647 被引量:6
标识
DOI:10.1021/acs.jctc.3c00507
摘要

Nucleic acid (NA)-ligand interactions are of paramount importance in a variety of biological processes, including cellular reproduction and protein biosynthesis, and therefore, NAs have been broadly recognized as potential drug targets. Understanding NA-ligand interactions at the atomic scale is essential for investigating the molecular mechanism and further assisting in NA-targeted drug discovery. Molecular docking is one of the predominant computational approaches for predicting the interactions between NAs and small molecules. Despite the availability of versatile docking programs, their performance profiles for NA-ligand complexes have not been thoroughly characterized. In this study, we first compiled the largest structure-based NA-ligand binding data set to date, containing 800 noncovalent NA-ligand complexes with clearly identified ligands. Based on this extensive data set, eight frequently used docking programs, including six protein-ligand docking programs (LeDock, Surflex-Dock, UCSF Dock6, AutoDock, AutoDock Vina, and PLANTS) and two specific NA-ligand docking programs (rDock and RLDOCK), were systematically evaluated in terms of binding pose and binding affinity predictions. The results demonstrated that some protein-ligand docking programs, specifically PLANTS and LeDock, produced more promising or comparable results compared with the specialized NA-ligand docking programs. Among the programs evaluated, PLANTS, rDock, and LeDock showed the highest performance in binding pose prediction, and their top-1 and best root-mean-square deviation (rmsd) success rates were as follows: PLANTS (35.93 and 76.05%), rDock (27.25 and 72.16%), and LeDock (27.40 and 64.37%). Compared with the moderate level of binding pose prediction, few programs were successful in binding affinity prediction, and the best correlation (Rp = -0.461) was observed with PLANTS. Finally, further comparison with the latest NA-ligand docking program (NLDock) on four well-established data sets revealed that PLANTS and LeDock outperformed NLDock in terms of binding pose prediction on all data sets, demonstrating their significant potential for NA-ligand docking. To the best of our knowledge, this study is the most comprehensive evaluation of popular molecular docking programs for NA-ligand systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
燕子应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
李健应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
刚刚
刚刚
斯文败类应助科研通管家采纳,获得30
1秒前
1秒前
完美世界应助Jnest采纳,获得10
1秒前
三哥哥w发布了新的文献求助10
2秒前
2秒前
呆萌代桃发布了新的文献求助10
4秒前
科研通AI2S应助独特绣连采纳,获得10
4秒前
兴奋千兰发布了新的文献求助10
5秒前
爱鹏鹏耶完成签到,获得积分10
5秒前
songnvshi发布了新的文献求助10
7秒前
YuF发布了新的文献求助10
7秒前
司徒元瑶完成签到 ,获得积分10
7秒前
9秒前
科研通AI2S应助黄金天下采纳,获得10
10秒前
11秒前
14秒前
万能图书馆应助咕噜噜采纳,获得30
14秒前
14秒前
wqiao2010发布了新的文献求助10
16秒前
支觅露完成签到 ,获得积分10
18秒前
cc发布了新的文献求助10
19秒前
纯真涵菱完成签到,获得积分10
21秒前
23秒前
24秒前
25秒前
干净怀寒发布了新的文献求助10
26秒前
26秒前
28秒前
呆萌代桃完成签到,获得积分10
29秒前
鸿儒发布了新的文献求助10
30秒前
iNk应助月月鸟采纳,获得20
32秒前
lz1023发布了新的文献求助10
32秒前
33秒前
快乐人杰完成签到,获得积分10
35秒前
快乐映雁完成签到,获得积分10
36秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316318
求助须知:如何正确求助?哪些是违规求助? 2948031
关于积分的说明 8539036
捐赠科研通 2624019
什么是DOI,文献DOI怎么找? 1435691
科研通“疑难数据库(出版商)”最低求助积分说明 665670
邀请新用户注册赠送积分活动 651532