已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

How Good Are Current Docking Programs at Nucleic Acid–Ligand Docking? A Comprehensive Evaluation

对接(动物) 自动停靠 蛋白质-配体对接 码头 寻找对接的构象空间 配体(生物化学) 药物发现 计算生物学 化学 结合位点 小分子 核酸 立体化学 组合化学 计算机科学 虚拟筛选 生物化学 生物 生物信息学 受体 基因 医学 护理部
作者
Dejun Jiang,Huifeng Zhao,Hongyan Du,Yafeng Deng,Zhenhua Wu,Jike Wang,Yundian Zeng,Haotian Zhang,Xiaorui Wang,Jian Wu,Chang‐Yu Hsieh,Tingjun Hou
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:19 (16): 5633-5647 被引量:25
标识
DOI:10.1021/acs.jctc.3c00507
摘要

Nucleic acid (NA)-ligand interactions are of paramount importance in a variety of biological processes, including cellular reproduction and protein biosynthesis, and therefore, NAs have been broadly recognized as potential drug targets. Understanding NA-ligand interactions at the atomic scale is essential for investigating the molecular mechanism and further assisting in NA-targeted drug discovery. Molecular docking is one of the predominant computational approaches for predicting the interactions between NAs and small molecules. Despite the availability of versatile docking programs, their performance profiles for NA-ligand complexes have not been thoroughly characterized. In this study, we first compiled the largest structure-based NA-ligand binding data set to date, containing 800 noncovalent NA-ligand complexes with clearly identified ligands. Based on this extensive data set, eight frequently used docking programs, including six protein-ligand docking programs (LeDock, Surflex-Dock, UCSF Dock6, AutoDock, AutoDock Vina, and PLANTS) and two specific NA-ligand docking programs (rDock and RLDOCK), were systematically evaluated in terms of binding pose and binding affinity predictions. The results demonstrated that some protein-ligand docking programs, specifically PLANTS and LeDock, produced more promising or comparable results compared with the specialized NA-ligand docking programs. Among the programs evaluated, PLANTS, rDock, and LeDock showed the highest performance in binding pose prediction, and their top-1 and best root-mean-square deviation (rmsd) success rates were as follows: PLANTS (35.93 and 76.05%), rDock (27.25 and 72.16%), and LeDock (27.40 and 64.37%). Compared with the moderate level of binding pose prediction, few programs were successful in binding affinity prediction, and the best correlation (Rp = -0.461) was observed with PLANTS. Finally, further comparison with the latest NA-ligand docking program (NLDock) on four well-established data sets revealed that PLANTS and LeDock outperformed NLDock in terms of binding pose prediction on all data sets, demonstrating their significant potential for NA-ligand docking. To the best of our knowledge, this study is the most comprehensive evaluation of popular molecular docking programs for NA-ligand systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BPATIENT完成签到 ,获得积分10
2秒前
3秒前
上官若男应助qwt采纳,获得10
3秒前
6秒前
zhangyk发布了新的文献求助10
7秒前
魄罗bro发布了新的文献求助10
13秒前
14秒前
18秒前
bxhcs完成签到,获得积分10
22秒前
zhangyk完成签到,获得积分10
24秒前
HansStone完成签到,获得积分10
25秒前
oldblack完成签到,获得积分10
27秒前
LONG完成签到 ,获得积分10
28秒前
matrixu完成签到,获得积分10
29秒前
beiwei完成签到 ,获得积分10
32秒前
三点半完成签到 ,获得积分10
38秒前
852应助bxhcs采纳,获得10
41秒前
哎健身完成签到 ,获得积分10
41秒前
格物完成签到,获得积分10
43秒前
CCC完成签到 ,获得积分10
45秒前
Mark完成签到 ,获得积分10
49秒前
Chaos完成签到,获得积分10
51秒前
53秒前
yf完成签到,获得积分10
59秒前
九九完成签到,获得积分10
59秒前
WILAY889发布了新的文献求助10
59秒前
陈补天完成签到 ,获得积分10
1分钟前
参也完成签到 ,获得积分10
1分钟前
狼人完成签到,获得积分10
1分钟前
1分钟前
dadadsad完成签到,获得积分10
1分钟前
汉堡包应助Yuyukoaii采纳,获得10
1分钟前
1分钟前
Yikao完成签到 ,获得积分10
1分钟前
jfc完成签到,获得积分10
1分钟前
1分钟前
熊熊阁发布了新的文献求助10
1分钟前
1分钟前
研友_ZGRvon完成签到,获得积分10
1分钟前
李可发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534114
求助须知:如何正确求助?哪些是违规求助? 4622235
关于积分的说明 14582010
捐赠科研通 4562343
什么是DOI,文献DOI怎么找? 2500106
邀请新用户注册赠送积分活动 1479665
关于科研通互助平台的介绍 1450782