Machine Learning in Predicting Printable Biomaterial Formulations for Direct Ink Writing

墨水池 生物材料 机器学习 计算机科学 人工智能 3D打印 3d打印 材料科学 模板 纳米技术 算法 生物医学工程 工程类 语音识别 复合材料
作者
Hongyi Chen,Yuanchang Liu,Stavroula Balabani,Ryuji Hirayama,Jie Huang
出处
期刊:Research [AAAS00]
卷期号:6 被引量:24
标识
DOI:10.34133/research.0197
摘要

Three-dimensional (3D) printing is emerging as a transformative technology for biomedical engineering. The 3D printed product can be patient-specific by allowing customizability and direct control of the architecture. The trial-and-error approach currently used for developing the composition of printable inks is time- and resource-consuming due to the increasing number of variables requiring expert knowledge. Artificial intelligence has the potential to reshape the ink development process by forming a predictive model for printability from experimental data. In this paper, we constructed machine learning (ML) algorithms including decision tree, random forest (RF), and deep learning (DL) to predict the printability of biomaterials. A total of 210 formulations including 16 different bioactive and smart materials and 4 solvents were 3D printed, and their printability was assessed. All ML methods were able to learn and predict the printability of a variety of inks based on their biomaterial formulations. In particular, the RF algorithm has achieved the highest accuracy (88.1%), precision (90.6%), and F1 score (87.0%), indicating the best overall performance out of the 3 algorithms, while DL has the highest recall (87.3%). Furthermore, the ML algorithms have predicted the printability window of biomaterials to guide the ink development. The printability map generated with DL has finer granularity than other algorithms. ML has proven to be an effective and novel strategy for developing biomaterial formulations with desired 3D printability for biomedical engineering applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
红桃K完成签到,获得积分10
1秒前
adeno发布了新的文献求助10
3秒前
qianci2009完成签到,获得积分10
4秒前
星辰大海应助热心访风采纳,获得10
4秒前
杂菜流完成签到,获得积分10
8秒前
mg完成签到,获得积分10
8秒前
开心的弱完成签到,获得积分10
9秒前
汉堡包应助苏邑采纳,获得10
10秒前
hmj007完成签到,获得积分10
11秒前
sheila完成签到 ,获得积分10
12秒前
清脆代桃完成签到 ,获得积分10
13秒前
共享精神应助h31318927采纳,获得10
13秒前
共享精神应助mm采纳,获得10
13秒前
zhaozhao完成签到,获得积分10
17秒前
17秒前
合适靖儿完成签到 ,获得积分10
18秒前
唯梦完成签到 ,获得积分10
20秒前
21秒前
ssw完成签到,获得积分10
22秒前
licheng完成签到,获得积分10
24秒前
keke完成签到,获得积分10
26秒前
Vincent发布了新的文献求助10
27秒前
瞿访云完成签到,获得积分10
29秒前
yyyyzhu应助科研通管家采纳,获得10
29秒前
郝君颖完成签到 ,获得积分10
30秒前
Harlotte完成签到 ,获得积分10
31秒前
Pauline完成签到 ,获得积分10
31秒前
xiazhq完成签到,获得积分10
33秒前
杨秋月完成签到,获得积分10
33秒前
四月清和完成签到,获得积分10
35秒前
wpybird完成签到,获得积分10
36秒前
xiangqing完成签到 ,获得积分10
37秒前
5433完成签到,获得积分10
38秒前
Aiden完成签到,获得积分10
39秒前
aleilei完成签到 ,获得积分10
40秒前
小蘑菇应助n5421采纳,获得10
40秒前
41秒前
磁带机完成签到,获得积分10
41秒前
里埃尔塞因斯完成签到 ,获得积分10
43秒前
guoke完成签到,获得积分10
43秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248882
求助须知:如何正确求助?哪些是违规求助? 2892279
关于积分的说明 8270432
捐赠科研通 2560561
什么是DOI,文献DOI怎么找? 1389110
科研通“疑难数据库(出版商)”最低求助积分说明 651004
邀请新用户注册赠送积分活动 627850