Fuzzy correlation entropy-based NSGA-II for energy-efficient hybrid flow-shop scheduling problem

计算机科学 模糊逻辑 能源消耗 数学优化 流水车间调度 熵(时间箭头) 调度(生产过程) 作业车间调度 工业工程 人工智能 工程类 数学 电气工程 物理 操作系统 地铁列车时刻表 量子力学
作者
Yi-Jian Wang,Juan Li,Gai-Ge Wang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:277: 110808-110808 被引量:1
标识
DOI:10.1016/j.knosys.2023.110808
摘要

Green scheduling of manufacturing industry with energy saving as the core has been paid more and more attention in academia and industry. As a classic scheduling problem, hybrid flow-shop scheduling problem (HFSP) has been receiving increasing research attention. However, most studies only focus on time-related metrics while neglecting energy consumption. In this article, we studied energy-efficient HFSP and assumed that machines can operate at different speeds. This is an assumption that has been rarely explored but can make the problem more relevant to real-world production. Moreover, the energy-efficient HFSP at a variable machine speed (EHFSP-VMS) was formulated as a multiobjective mathematical optimization model aiming to optimize make-span and total energy consumption simultaneously. As a landmark achievement in the field of multiobjective optimization, non-dominated sorting genetic algorithm-II (NSGA-II) is adopted and improved as the solver, which is called fuzzy correlation entropy (FCE)-based NSGA-II (FCENSGA-II). Firstly, FCE, a fusion of fuzzy mathematics and information theory, is used to describe the difference and the FCE-based crowding distance is proposed for the first time. Its time complexity is lower than the original crowding distance. In addition, a machine learning strategy, namely opposition-based learning (OBL), is used to learn from opposite regions of the search space and increase the exploratory ability of the algorithm and the diversity of solutions. Finally, a critical path knowledge-based energy saving strategy (ESC) is adopted to discover non-dominant solutions by reducing the speed of machines on non-critical paths. A large number of experiments are conducted to test the performance of FCENSGA-II. The results show that in all test instances, the average, best and worst values of the solution obtained by FCENSGA-II are better than the compared state-of-the-art algorithms, and even the worst values obtained by FCENSGA-II in 75% of test instances are better than the best values of compared algorithms, which strongly confirms that FCENSGA-II outperforms the compared state-of-the-art algorithms for solving EHFSP-VMS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷人啤酒完成签到,获得积分10
刚刚
热心市民小红花应助yly采纳,获得10
刚刚
市区凤姐完成签到 ,获得积分10
刚刚
打铁佬发布了新的文献求助10
刚刚
归尘应助鱼鱼采纳,获得10
刚刚
希望天下0贩的0应助Rain采纳,获得10
1秒前
超级苗条完成签到,获得积分10
2秒前
帆帆牛完成签到,获得积分10
2秒前
乖乖猫发布了新的文献求助10
2秒前
3秒前
酷炫小懒虫完成签到,获得积分0
3秒前
馨馨发布了新的文献求助30
3秒前
3秒前
MY999应助我就回来了采纳,获得30
4秒前
冷傲藏鸟发布了新的文献求助10
4秒前
4秒前
6秒前
欣慰小丸子完成签到,获得积分10
6秒前
7秒前
7秒前
NexusExplorer应助其言采纳,获得10
7秒前
大个应助袁莱采纳,获得10
7秒前
7秒前
water应助小垚采纳,获得10
8秒前
8秒前
8秒前
9秒前
打打应助zhaolihua采纳,获得10
9秒前
qw1驳回了deallyxyz应助
9秒前
Akim应助肥鲸鱼采纳,获得10
9秒前
LRISEM发布了新的文献求助10
10秒前
科研通AI2S应助君君采纳,获得10
10秒前
传奇3应助LBX采纳,获得20
10秒前
在水一方应助11采纳,获得10
10秒前
sunlulu发布了新的文献求助30
10秒前
11秒前
LXY完成签到,获得积分10
11秒前
leaguy发布了新的文献求助200
11秒前
右声道发布了新的文献求助10
11秒前
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960498
求助须知:如何正确求助?哪些是违规求助? 3506752
关于积分的说明 11131877
捐赠科研通 3238932
什么是DOI,文献DOI怎么找? 1789917
邀请新用户注册赠送积分活动 872043
科研通“疑难数据库(出版商)”最低求助积分说明 803128