Fuzzy correlation entropy-based NSGA-II for energy-efficient hybrid flow-shop scheduling problem

计算机科学 模糊逻辑 能源消耗 数学优化 流水车间调度 熵(时间箭头) 调度(生产过程) 作业车间调度 工业工程 人工智能 工程类 数学 电气工程 物理 操作系统 地铁列车时刻表 量子力学
作者
Yi-Jian Wang,Juan Li,Gai-Ge Wang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:277: 110808-110808 被引量:1
标识
DOI:10.1016/j.knosys.2023.110808
摘要

Green scheduling of manufacturing industry with energy saving as the core has been paid more and more attention in academia and industry. As a classic scheduling problem, hybrid flow-shop scheduling problem (HFSP) has been receiving increasing research attention. However, most studies only focus on time-related metrics while neglecting energy consumption. In this article, we studied energy-efficient HFSP and assumed that machines can operate at different speeds. This is an assumption that has been rarely explored but can make the problem more relevant to real-world production. Moreover, the energy-efficient HFSP at a variable machine speed (EHFSP-VMS) was formulated as a multiobjective mathematical optimization model aiming to optimize make-span and total energy consumption simultaneously. As a landmark achievement in the field of multiobjective optimization, non-dominated sorting genetic algorithm-II (NSGA-II) is adopted and improved as the solver, which is called fuzzy correlation entropy (FCE)-based NSGA-II (FCENSGA-II). Firstly, FCE, a fusion of fuzzy mathematics and information theory, is used to describe the difference and the FCE-based crowding distance is proposed for the first time. Its time complexity is lower than the original crowding distance. In addition, a machine learning strategy, namely opposition-based learning (OBL), is used to learn from opposite regions of the search space and increase the exploratory ability of the algorithm and the diversity of solutions. Finally, a critical path knowledge-based energy saving strategy (ESC) is adopted to discover non-dominant solutions by reducing the speed of machines on non-critical paths. A large number of experiments are conducted to test the performance of FCENSGA-II. The results show that in all test instances, the average, best and worst values of the solution obtained by FCENSGA-II are better than the compared state-of-the-art algorithms, and even the worst values obtained by FCENSGA-II in 75% of test instances are better than the best values of compared algorithms, which strongly confirms that FCENSGA-II outperforms the compared state-of-the-art algorithms for solving EHFSP-VMS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
fang完成签到,获得积分10
2秒前
5秒前
6秒前
Hello应助qingzhou采纳,获得10
7秒前
9秒前
CodeCraft应助li采纳,获得10
9秒前
留胡子的垣完成签到,获得积分10
10秒前
10秒前
研友_nV2pkn发布了新的文献求助10
10秒前
11秒前
完美世界应助俏皮的豌豆采纳,获得10
13秒前
13秒前
KMGTmunp发布了新的文献求助10
14秒前
15秒前
彭于晏应助留胡子的垣采纳,获得10
15秒前
忧虑的谷菱完成签到,获得积分10
15秒前
哎呦发布了新的文献求助10
17秒前
高山流水完成签到,获得积分10
17秒前
18秒前
ccgod完成签到,获得积分10
18秒前
18秒前
小小狗完成签到,获得积分10
19秒前
qingzhou发布了新的文献求助10
19秒前
英俊的雁山完成签到,获得积分10
19秒前
21秒前
花痴的骁完成签到 ,获得积分10
23秒前
23秒前
TTTL完成签到,获得积分20
23秒前
aiiLuX发布了新的文献求助10
24秒前
科研通AI2S应助永政sci采纳,获得10
24秒前
可爱的函函应助啊懂采纳,获得10
24秒前
24秒前
25秒前
冰山未闯发布了新的文献求助10
25秒前
HHy完成签到,获得积分10
26秒前
安玖发布了新的文献求助10
27秒前
今后应助ljs采纳,获得10
28秒前
30秒前
30秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124422
求助须知:如何正确求助?哪些是违规求助? 2774782
关于积分的说明 7723789
捐赠科研通 2430217
什么是DOI,文献DOI怎么找? 1290974
科研通“疑难数据库(出版商)”最低求助积分说明 622023
版权声明 600297