Efficient plasma metabolic fingerprinting as a novel tool for diagnosis and prognosis of gastric cancer: a large-scale, multicentre study

医学 前瞻性队列研究 回顾性队列研究 队列 癌症 内科学 比例危险模型 逻辑回归 肿瘤科 机器学习 人工智能 计算机科学
作者
Zhiyuan Xu,Yida Huang,Can Hu,Lingbin Du,Yian Du,Yanqiang Zhang,Jiang‐Jiang Qin,Wanshan Liu,Ruimin Wang,Shouzhi Yang,Jiao Wu,Jing Cao,Juxiang Zhang,Guiping Chen,Hang Lv,Ping Zhao,Weiyang He,Xiaoliang Wang,Min Xu,Pingfang Wang,Chuan-Ying Hong,Litao Yang,Jingli Xu,Jiahui Chen,Qing Wei,Ruolan Zhang,Yuan Li,Kun Qian,Xiangdong Cheng
出处
期刊:Gut [BMJ]
卷期号:72 (11): 2051-2067 被引量:24
标识
DOI:10.1136/gutjnl-2023-330045
摘要

Objective Metabolic biomarkers are expected to decode the phenotype of gastric cancer (GC) and lead to high-performance blood tests towards GC diagnosis and prognosis. We attempted to develop diagnostic and prognostic models for GC based on plasma metabolic information. Design We conducted a large-scale, multicentre study comprising 1944 participants from 7 centres in retrospective cohort and 264 participants in prospective cohort. Discovery and verification phases of diagnostic and prognostic models were conducted in retrospective cohort through machine learning and Cox regression of plasma metabolic fingerprints (PMFs) obtained by nanoparticle-enhanced laser desorption/ionisation-mass spectrometry (NPELDI-MS). Furthermore, the developed diagnostic model was validated in prospective cohort by both NPELDI-MS and ultra-performance liquid chromatography-MS (UPLC-MS). Results We demonstrated the high throughput, desirable reproducibility and limited centre-specific effects of PMFs obtained through NPELDI-MS. In retrospective cohort, we achieved diagnostic performance with areas under curves (AUCs) of 0.862–0.988 in the discovery (n=1157 from 5 centres) and independent external verification dataset (n=787 from another 2 centres), through 5 different machine learning of PMFs, including neural network, ridge regression, lasso regression, support vector machine and random forest. Further, a metabolic panel consisting of 21 metabolites was constructed and identified for GC diagnosis with AUCs of 0.921–0.971 and 0.907–0.940 in the discovery and verification dataset, respectively. In the prospective study (n=264 from lead centre), both NPELDI-MS and UPLC-MS were applied to detect and validate the metabolic panel, and the diagnostic AUCs were 0.855–0.918 and 0.856–0.916, respectively. Moreover, we constructed a prognosis scoring system for GC in retrospective cohort, which can effectively predict the survival of GC patients. Conclusion We developed and validated diagnostic and prognostic models for GC, which also contribute to advanced metabolic analysis towards diseases, including but not limited to GC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jl发布了新的文献求助10
刚刚
1秒前
Yochamme发布了新的文献求助10
6秒前
rose完成签到,获得积分10
6秒前
6秒前
8秒前
kbc完成签到,获得积分10
8秒前
林星应助此时留念采纳,获得30
8秒前
9秒前
搜集达人应助jl采纳,获得10
10秒前
Lucas应助jackycas采纳,获得10
10秒前
薰硝壤应助科研小白采纳,获得10
11秒前
虎虎发布了新的文献求助10
11秒前
Yochamme完成签到,获得积分10
12秒前
12秒前
独特的酸奶完成签到,获得积分10
13秒前
zhangyannini发布了新的文献求助10
14秒前
14秒前
15秒前
光亮小蚂蚁完成签到,获得积分10
16秒前
草木发布了新的文献求助10
16秒前
里脊鱼发布了新的文献求助10
17秒前
orixero应助虎虎采纳,获得10
19秒前
科研小达人完成签到,获得积分10
20秒前
jl完成签到,获得积分10
20秒前
21秒前
25秒前
光亮小蚂蚁发布了新的文献求助100
25秒前
不配.应助端庄的白开水采纳,获得10
26秒前
薰硝壤应助阔达曲奇采纳,获得10
27秒前
yin完成签到,获得积分10
27秒前
1234567xjy完成签到,获得积分20
28秒前
清脆笑柳完成签到,获得积分10
28秒前
zxh完成签到,获得积分10
28秒前
29秒前
今后应助Jiaxiao采纳,获得10
30秒前
LU完成签到 ,获得积分10
30秒前
31秒前
31秒前
小二郎应助追风的人偶采纳,获得10
31秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141417
求助须知:如何正确求助?哪些是违规求助? 2792460
关于积分的说明 7802814
捐赠科研通 2448645
什么是DOI,文献DOI怎么找? 1302695
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237