Efficient plasma metabolic fingerprinting as a novel tool for diagnosis and prognosis of gastric cancer: a large-scale, multicentre study

医学 前瞻性队列研究 回顾性队列研究 队列 癌症 内科学 比例危险模型 逻辑回归 肿瘤科 机器学习 人工智能 计算机科学
作者
Zhiyuan Xu,Yida Huang,Can Hu,Lingbin Du,Yian Du,Yanqiang Zhang,Jiang‐Jiang Qin,Wanshan Liu,Ruimin Wang,Shouzhi Yang,Jiao Wu,Jing Cao,Juxiang Zhang,Guiping Chen,Hang Lv,Ping Zhao,Weiyang He,Xiaoliang Wang,Min Xu,Pingfang Wang,Chuanshen Hong,Litao Yang,Jingli Xu,Jiahui Chen,Qing Wei,Ruolan Zhang,Yuan Li,Kun Qian,Xiangdong Cheng
出处
期刊:Gut [BMJ]
卷期号:72 (11): 2051-2067 被引量:30
标识
DOI:10.1136/gutjnl-2023-330045
摘要

Objective Metabolic biomarkers are expected to decode the phenotype of gastric cancer (GC) and lead to high-performance blood tests towards GC diagnosis and prognosis. We attempted to develop diagnostic and prognostic models for GC based on plasma metabolic information. Design We conducted a large-scale, multicentre study comprising 1944 participants from 7 centres in retrospective cohort and 264 participants in prospective cohort. Discovery and verification phases of diagnostic and prognostic models were conducted in retrospective cohort through machine learning and Cox regression of plasma metabolic fingerprints (PMFs) obtained by nanoparticle-enhanced laser desorption/ionisation-mass spectrometry (NPELDI-MS). Furthermore, the developed diagnostic model was validated in prospective cohort by both NPELDI-MS and ultra-performance liquid chromatography-MS (UPLC-MS). Results We demonstrated the high throughput, desirable reproducibility and limited centre-specific effects of PMFs obtained through NPELDI-MS. In retrospective cohort, we achieved diagnostic performance with areas under curves (AUCs) of 0.862–0.988 in the discovery (n=1157 from 5 centres) and independent external verification dataset (n=787 from another 2 centres), through 5 different machine learning of PMFs, including neural network, ridge regression, lasso regression, support vector machine and random forest. Further, a metabolic panel consisting of 21 metabolites was constructed and identified for GC diagnosis with AUCs of 0.921–0.971 and 0.907–0.940 in the discovery and verification dataset, respectively. In the prospective study (n=264 from lead centre), both NPELDI-MS and UPLC-MS were applied to detect and validate the metabolic panel, and the diagnostic AUCs were 0.855–0.918 and 0.856–0.916, respectively. Moreover, we constructed a prognosis scoring system for GC in retrospective cohort, which can effectively predict the survival of GC patients. Conclusion We developed and validated diagnostic and prognostic models for GC, which also contribute to advanced metabolic analysis towards diseases, including but not limited to GC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呢不辣完成签到,获得积分10
刚刚
刚刚
shi hui应助陈博士采纳,获得10
刚刚
刚刚
糖糖关注了科研通微信公众号
1秒前
1秒前
小恶于完成签到 ,获得积分10
1秒前
科研通AI2S应助落晨采纳,获得10
2秒前
2秒前
3秒前
半颗橙子发布了新的文献求助10
3秒前
小可爱完成签到 ,获得积分10
3秒前
4秒前
5秒前
5秒前
Jiangnj发布了新的文献求助30
5秒前
samantha完成签到,获得积分10
6秒前
6秒前
俎树同完成签到 ,获得积分10
6秒前
Natsu完成签到,获得积分10
6秒前
马保国123发布了新的文献求助10
7秒前
丘比特应助无限的隶采纳,获得10
7秒前
在云里爱与歌完成签到,获得积分10
8秒前
迟大猫应助研究生采纳,获得10
8秒前
可行完成签到,获得积分10
8秒前
8秒前
yuhui完成签到,获得积分10
8秒前
9秒前
pi发布了新的文献求助10
9秒前
9秒前
小蘑菇应助科研菜鸟采纳,获得10
10秒前
Owen应助晚风采纳,获得10
10秒前
小二郎应助Jiangnj采纳,获得10
10秒前
微信研友完成签到,获得积分10
10秒前
科研通AI5应助陈杰采纳,获得10
10秒前
11秒前
Jasper应助含糊采纳,获得10
11秒前
dfggg发布了新的文献求助10
11秒前
跑在颖发布了新的文献求助10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762