控制变量
莱维过程
计算机科学
过程(计算)
随机变量
计算金融学
功能(生物学)
期权估价
随机博弈
傅里叶变换
路径(计算)
数学优化
特征函数(概率论)
应用数学
计量经济学
数学
数理经济学
随机变量
概率密度函数
统计
人工智能
马尔科夫蒙特卡洛
混合蒙特卡罗
数学分析
贝叶斯概率
进化生物学
生物
程序设计语言
操作系统
作者
Kenichiro Shiraya,Sheng Wang,Akira Yamazaki
出处
期刊:Journal of Computational Finance
[Infopro Digital]
日期:2023-01-01
标识
DOI:10.21314/jcf.2023.006
摘要
We propose a new control variate method combined with a characteristic function approach for pricing path-dependent options under time-changed Lévy models. In this method, we generate a process that is highly correlated with an underlying price process generated by the time-changed Lévy model. We then apply the characteristic function approach with a fast Fourier transform to obtain the expected payoff of the corresponding option under the correlated process. In numerical experiments, we employ three types of path-dependent options and six types of time-changed Lévy models to confirm the efficiency of our method. To the best of our knowledge, this paper is the first to develop an efficient control variate method for time-changed Lévy models.
科研通智能强力驱动
Strongly Powered by AbleSci AI