材料科学
催化作用
介孔材料
密度泛函理论
电池(电)
可逆氢电极
氮气
解吸
费米能级
电催化剂
化学工程
堆积
X射线光电子能谱
基质(水族馆)
吸附
电极
物理化学
计算化学
化学
电解质
电化学
热力学
海洋学
工程类
功率(物理)
生物化学
量子力学
电子
物理
有机化学
参比电极
地质学
作者
Yatian Zhang,Yi Jiang,Gaopeng Jiang,Tyler Or,Rui Gao,Haoze Zhang,Zhengyu Bai,Ning Chen,Ya‐Ping Deng,Zhongwei Chen
出处
期刊:Nano Energy
[Elsevier]
日期:2023-07-08
卷期号:115: 108672-108672
被引量:10
标识
DOI:10.1016/j.nanoen.2023.108672
摘要
Highly efficient transition-metal electrocatalysts hold great promise for overcoming the sluggish kinetics of the oxygen reduction reaction (ORR), while the dense stacking of active sites within bulk materials constrains electrocatalytic behaviors. Therefore, nano-structure engineering to obtain hierarchal morphology is crucial to enrich the active sites and facilitate the corresponding mass transfer. Here, the three-dimensional interconnected and ordered mesoporous (3DOM) Fe2Nx decorated on TiOy (Fe2Nx @TiOy) is constructed. By introducing nitrogen vacancies, the increased surface area, and active sites boost ORR kinetics, including a high half-wave potential (0.88 V vs reversible hydrogen electrode) and high current density (71 mA cm−2 at 0.8 V) have been reached. The zinc-air battery assembled with Fe2Nx @TiOy catalysts presents a high specific capacity of 809 mAh g−1. Density functional theory analysis and X-ray absorption spectroscopy further confirm the promoter effects of nitrogen vacancies on modulating electronic structure of Fe, through regulating intermediates adsorption/desorption. The shift of its d-band center is also found toward the Fermi energy level, strengthening the adsorbate-substrate interaction. This allows oxygen species to be favorably stabilized onto active sites of Fe2Nx @TiOy.
科研通智能强力驱动
Strongly Powered by AbleSci AI