亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Combined Marine Predators and Particle Swarm Optimization for Task Offloading in Vehicular Edge Computing Network

云计算 计算机科学 粒子群优化 分布式计算 GSM演进的增强数据速率 边缘计算 资源配置 服务器 数据传输 任务(项目管理) 计算机网络 算法 工程类 人工智能 系统工程 操作系统
作者
S. Syed Abuthahir,J. Selvin Paul Peter
出处
期刊:International Journal of Networked and Distributed Computing [Springer Nature]
卷期号:12 (2): 265-276 被引量:1
标识
DOI:10.1007/s44227-024-00034-z
摘要

Abstract With the rapid advancement in technology, numerous advanced vehicular applications have emerged that generate large volumes of data that need to be processed on the fly. The vehicles' computing resources are limited and constrained in processing the huge amount of data generated by these applications. Cloud data centers, which are large and capable of processing the generated data, tend to be far away from the vehicles. The long distance between the cloud and the vehicles results in large transmission delays, making the cloud less suitable for executing such data. To address the long-standing issue of huge transmission delays in the cloud, edge computing, which deploys computing servers at the edge of the network, was introduced. The edge computing network shortens the communication distance between the vehicles and the processing resources and also provides more powerful computation compared to the vehicles' computing resources. The advantages offered by the vehicular edge network can only be fully realized with robust and efficient resource allocation. Poor allocation of these resources can lead to a worse situation than the cloud. In this paper, a hybrid Marine Predatory and Particle Swarm Optimization Algorithm (MPA–PSO) is proposed for optimal resource allocation. The MPA–PSO algorithm takes advantage of the effectiveness and reliability of the global and local search abilities of the Particle Swarm Optimization Algorithm (PSO) to improve the suboptimal global search ability of the MPA. This enhances the other steps in the MPA to ensure an optimal solution. The proposed MPA–PSO algorithm was implemented using MATLAB alongside the conventional PSO and MPA, and the proposed MPA–PSO recorded a significant improvement over the PSO and MPA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shain完成签到,获得积分10
8秒前
思源应助科研通管家采纳,获得10
14秒前
李爱国应助科研通管家采纳,获得10
14秒前
BowieHuang应助科研通管家采纳,获得10
14秒前
14秒前
脸小呆呆完成签到,获得积分10
18秒前
李雩完成签到 ,获得积分10
23秒前
26秒前
27秒前
IMP完成签到 ,获得积分10
28秒前
脸小呆呆发布了新的文献求助10
30秒前
32秒前
yunshui发布了新的文献求助10
40秒前
小二郎应助Flame采纳,获得10
44秒前
Angora完成签到,获得积分10
51秒前
JamesPei应助lalalaaaa采纳,获得10
51秒前
56秒前
小黄还你好完成签到 ,获得积分10
56秒前
凡人完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
机智飞荷发布了新的文献求助10
1分钟前
乌鲁鲁发布了新的文献求助10
1分钟前
酷波er应助chongqi采纳,获得10
1分钟前
1分钟前
一只大嵩鼠完成签到 ,获得积分10
1分钟前
打打应助小饶采纳,获得10
1分钟前
1分钟前
光亮静槐完成签到 ,获得积分10
1分钟前
Wuyx完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
在水一方应助单纯采纳,获得10
1分钟前
科研通AI6应助机智飞荷采纳,获得10
1分钟前
1分钟前
qqqq发布了新的文献求助10
1分钟前
小江发布了新的文献求助10
1分钟前
观澜发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590362
求助须知:如何正确求助?哪些是违规求助? 4674712
关于积分的说明 14795121
捐赠科研通 4631465
什么是DOI,文献DOI怎么找? 2532696
邀请新用户注册赠送积分活动 1501268
关于科研通互助平台的介绍 1468617