已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Combined Marine Predators and Particle Swarm Optimization for Task Offloading in Vehicular Edge Computing Network

云计算 计算机科学 粒子群优化 分布式计算 GSM演进的增强数据速率 边缘计算 资源配置 服务器 数据传输 任务(项目管理) 计算机网络 算法 工程类 人工智能 操作系统 系统工程
作者
S. Syed Abuthahir,J. Selvin Paul Peter
出处
期刊:International Journal of Networked and Distributed Computing 卷期号:12 (2): 265-276 被引量:1
标识
DOI:10.1007/s44227-024-00034-z
摘要

Abstract With the rapid advancement in technology, numerous advanced vehicular applications have emerged that generate large volumes of data that need to be processed on the fly. The vehicles' computing resources are limited and constrained in processing the huge amount of data generated by these applications. Cloud data centers, which are large and capable of processing the generated data, tend to be far away from the vehicles. The long distance between the cloud and the vehicles results in large transmission delays, making the cloud less suitable for executing such data. To address the long-standing issue of huge transmission delays in the cloud, edge computing, which deploys computing servers at the edge of the network, was introduced. The edge computing network shortens the communication distance between the vehicles and the processing resources and also provides more powerful computation compared to the vehicles' computing resources. The advantages offered by the vehicular edge network can only be fully realized with robust and efficient resource allocation. Poor allocation of these resources can lead to a worse situation than the cloud. In this paper, a hybrid Marine Predatory and Particle Swarm Optimization Algorithm (MPA–PSO) is proposed for optimal resource allocation. The MPA–PSO algorithm takes advantage of the effectiveness and reliability of the global and local search abilities of the Particle Swarm Optimization Algorithm (PSO) to improve the suboptimal global search ability of the MPA. This enhances the other steps in the MPA to ensure an optimal solution. The proposed MPA–PSO algorithm was implemented using MATLAB alongside the conventional PSO and MPA, and the proposed MPA–PSO recorded a significant improvement over the PSO and MPA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
义气夜山发布了新的文献求助10
刚刚
上官若男应助你的益达采纳,获得10
1秒前
dfgh完成签到,获得积分10
2秒前
俊逸芸遥完成签到,获得积分10
2秒前
草莓养乐多完成签到 ,获得积分10
3秒前
哆啦η梦完成签到,获得积分10
4秒前
Jasper应助张狗蛋采纳,获得10
5秒前
妮妮发布了新的文献求助10
6秒前
朴素千亦完成签到,获得积分10
6秒前
errui完成签到,获得积分10
6秒前
王宝钏发布了新的文献求助20
7秒前
小蘑菇应助活力秋寒采纳,获得10
7秒前
归尘发布了新的文献求助10
8秒前
8秒前
言午完成签到,获得积分10
8秒前
10秒前
10秒前
小马甲应助西门晴采纳,获得10
11秒前
风中乐松完成签到,获得积分20
13秒前
gya发布了新的文献求助10
13秒前
14秒前
闵靖仇完成签到,获得积分10
14秒前
三寸光阴发布了新的文献求助10
15秒前
李爱国应助xiawqo采纳,获得10
15秒前
16秒前
17秒前
调皮嫣娆发布了新的文献求助10
17秒前
18秒前
yue完成签到 ,获得积分10
18秒前
Singularity应助研友_Z7Xdl8采纳,获得10
20秒前
20秒前
21秒前
zhangzheng发布了新的文献求助10
22秒前
jinlinfang发布了新的文献求助10
22秒前
Aurora完成签到,获得积分10
23秒前
24秒前
24秒前
张狗蛋发布了新的文献求助10
25秒前
HEIKU应助浮云过青山采纳,获得10
27秒前
仔仔七发布了新的文献求助10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
2024-2030年中国聚异戊二烯橡胶行业市场现状调查及发展前景研判报告 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3590370
求助须知:如何正确求助?哪些是违规求助? 3158661
关于积分的说明 9521041
捐赠科研通 2861726
什么是DOI,文献DOI怎么找? 1572746
邀请新用户注册赠送积分活动 738102
科研通“疑难数据库(出版商)”最低求助积分说明 722676