A Combined Marine Predators and Particle Swarm Optimization for Task Offloading in Vehicular Edge Computing Network

云计算 计算机科学 粒子群优化 分布式计算 GSM演进的增强数据速率 边缘计算 资源配置 服务器 数据传输 任务(项目管理) 计算机网络 算法 工程类 人工智能 操作系统 系统工程
作者
S. Syed Abuthahir,J. Selvin Paul Peter
出处
期刊:International Journal of Networked and Distributed Computing [Springer Nature]
卷期号:12 (2): 265-276 被引量:1
标识
DOI:10.1007/s44227-024-00034-z
摘要

Abstract With the rapid advancement in technology, numerous advanced vehicular applications have emerged that generate large volumes of data that need to be processed on the fly. The vehicles' computing resources are limited and constrained in processing the huge amount of data generated by these applications. Cloud data centers, which are large and capable of processing the generated data, tend to be far away from the vehicles. The long distance between the cloud and the vehicles results in large transmission delays, making the cloud less suitable for executing such data. To address the long-standing issue of huge transmission delays in the cloud, edge computing, which deploys computing servers at the edge of the network, was introduced. The edge computing network shortens the communication distance between the vehicles and the processing resources and also provides more powerful computation compared to the vehicles' computing resources. The advantages offered by the vehicular edge network can only be fully realized with robust and efficient resource allocation. Poor allocation of these resources can lead to a worse situation than the cloud. In this paper, a hybrid Marine Predatory and Particle Swarm Optimization Algorithm (MPA–PSO) is proposed for optimal resource allocation. The MPA–PSO algorithm takes advantage of the effectiveness and reliability of the global and local search abilities of the Particle Swarm Optimization Algorithm (PSO) to improve the suboptimal global search ability of the MPA. This enhances the other steps in the MPA to ensure an optimal solution. The proposed MPA–PSO algorithm was implemented using MATLAB alongside the conventional PSO and MPA, and the proposed MPA–PSO recorded a significant improvement over the PSO and MPA.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1024完成签到,获得积分10
刚刚
刚刚
量子星尘发布了新的文献求助10
刚刚
mhb115完成签到,获得积分10
1秒前
1秒前
2秒前
温乘云发布了新的文献求助10
2秒前
手术完成签到,获得积分20
2秒前
开心忆秋发布了新的文献求助30
3秒前
3秒前
小芒果发布了新的文献求助10
3秒前
慕青应助Fairy采纳,获得10
3秒前
人各有痣完成签到,获得积分10
3秒前
田様应助Kim采纳,获得10
4秒前
姜姜完成签到,获得积分10
5秒前
祖之微笑发布了新的文献求助10
5秒前
共享精神应助不可思宇采纳,获得10
5秒前
科研不秃头完成签到,获得积分10
6秒前
yajun发布了新的文献求助10
6秒前
清楚完成签到,获得积分10
6秒前
6秒前
liwenhao应助Stranger采纳,获得10
6秒前
6秒前
JH完成签到,获得积分10
6秒前
6秒前
qu蛐完成签到 ,获得积分10
6秒前
黄坤完成签到,获得积分10
7秒前
F1120完成签到,获得积分10
7秒前
yls123发布了新的文献求助10
7秒前
蚌壳完成签到,获得积分20
7秒前
努力上进的小张完成签到,获得积分10
7秒前
光亮的灭绝完成签到,获得积分10
7秒前
7秒前
北冥有鱼发布了新的文献求助10
8秒前
雨濛濛发布了新的文献求助10
8秒前
8秒前
qiu完成签到,获得积分10
8秒前
千暮完成签到,获得积分10
9秒前
9秒前
无花果应助迷路沉鱼采纳,获得10
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699262
求助须知:如何正确求助?哪些是违规求助? 5129994
关于积分的说明 15225198
捐赠科研通 4854268
什么是DOI,文献DOI怎么找? 2604550
邀请新用户注册赠送积分活动 1556014
关于科研通互助平台的介绍 1514297