A Combined Marine Predators and Particle Swarm Optimization for Task Offloading in Vehicular Edge Computing Network

云计算 计算机科学 粒子群优化 分布式计算 GSM演进的增强数据速率 边缘计算 资源配置 服务器 数据传输 任务(项目管理) 计算机网络 算法 工程类 人工智能 操作系统 系统工程
作者
S. Syed Abuthahir,J. Selvin Paul Peter
出处
期刊:International Journal of Networked and Distributed Computing [Springer Nature]
卷期号:12 (2): 265-276 被引量:1
标识
DOI:10.1007/s44227-024-00034-z
摘要

Abstract With the rapid advancement in technology, numerous advanced vehicular applications have emerged that generate large volumes of data that need to be processed on the fly. The vehicles' computing resources are limited and constrained in processing the huge amount of data generated by these applications. Cloud data centers, which are large and capable of processing the generated data, tend to be far away from the vehicles. The long distance between the cloud and the vehicles results in large transmission delays, making the cloud less suitable for executing such data. To address the long-standing issue of huge transmission delays in the cloud, edge computing, which deploys computing servers at the edge of the network, was introduced. The edge computing network shortens the communication distance between the vehicles and the processing resources and also provides more powerful computation compared to the vehicles' computing resources. The advantages offered by the vehicular edge network can only be fully realized with robust and efficient resource allocation. Poor allocation of these resources can lead to a worse situation than the cloud. In this paper, a hybrid Marine Predatory and Particle Swarm Optimization Algorithm (MPA–PSO) is proposed for optimal resource allocation. The MPA–PSO algorithm takes advantage of the effectiveness and reliability of the global and local search abilities of the Particle Swarm Optimization Algorithm (PSO) to improve the suboptimal global search ability of the MPA. This enhances the other steps in the MPA to ensure an optimal solution. The proposed MPA–PSO algorithm was implemented using MATLAB alongside the conventional PSO and MPA, and the proposed MPA–PSO recorded a significant improvement over the PSO and MPA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yu_z完成签到 ,获得积分10
刚刚
李健应助查丽采纳,获得10
刚刚
刚刚
2秒前
女神金完成签到 ,获得积分10
2秒前
LWJ发布了新的文献求助10
4秒前
pitto发布了新的文献求助10
4秒前
峥2发布了新的文献求助10
4秒前
haoxiaoyao完成签到,获得积分10
4秒前
LYSM发布了新的文献求助10
4秒前
malele完成签到,获得积分10
5秒前
H2CO3发布了新的文献求助10
6秒前
8秒前
2233完成签到,获得积分10
9秒前
小袁完成签到,获得积分10
10秒前
超帅的碱发布了新的文献求助30
10秒前
10秒前
遥不可及完成签到,获得积分20
12秒前
眠眠羊完成签到,获得积分10
13秒前
查丽发布了新的文献求助10
14秒前
16秒前
16秒前
淡淡博完成签到 ,获得积分10
16秒前
善学以致用应助LWJ采纳,获得30
16秒前
FashionBoy应助江幻天采纳,获得10
16秒前
科研通AI2S应助11采纳,获得10
18秒前
嘉丽的后花园完成签到,获得积分10
19秒前
英姑应助Ode采纳,获得10
20秒前
田田完成签到 ,获得积分10
20秒前
sun完成签到 ,获得积分10
20秒前
NexusExplorer应助无痕采纳,获得10
21秒前
晴烟ZYM发布了新的文献求助30
21秒前
领导范儿应助心如采纳,获得10
21秒前
旺仔狗狗发布了新的文献求助10
22秒前
曾雅麟发布了新的文献求助10
22秒前
Gin完成签到,获得积分10
23秒前
CodeCraft应助乐闻采纳,获得10
23秒前
24秒前
Ricardo完成签到 ,获得积分10
25秒前
吕吕吕发布了新的文献求助10
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992117
求助须知:如何正确求助?哪些是违规求助? 3533123
关于积分的说明 11261129
捐赠科研通 3272496
什么是DOI,文献DOI怎么找? 1805837
邀请新用户注册赠送积分活动 882717
科研通“疑难数据库(出版商)”最低求助积分说明 809425