A Combined Marine Predators and Particle Swarm Optimization for Task Offloading in Vehicular Edge Computing Network

云计算 计算机科学 粒子群优化 分布式计算 GSM演进的增强数据速率 边缘计算 资源配置 服务器 数据传输 任务(项目管理) 计算机网络 算法 工程类 人工智能 操作系统 系统工程
作者
S. Syed Abuthahir,J. Selvin Paul Peter
出处
期刊:International Journal of Networked and Distributed Computing [Springer Nature]
卷期号:12 (2): 265-276 被引量:1
标识
DOI:10.1007/s44227-024-00034-z
摘要

Abstract With the rapid advancement in technology, numerous advanced vehicular applications have emerged that generate large volumes of data that need to be processed on the fly. The vehicles' computing resources are limited and constrained in processing the huge amount of data generated by these applications. Cloud data centers, which are large and capable of processing the generated data, tend to be far away from the vehicles. The long distance between the cloud and the vehicles results in large transmission delays, making the cloud less suitable for executing such data. To address the long-standing issue of huge transmission delays in the cloud, edge computing, which deploys computing servers at the edge of the network, was introduced. The edge computing network shortens the communication distance between the vehicles and the processing resources and also provides more powerful computation compared to the vehicles' computing resources. The advantages offered by the vehicular edge network can only be fully realized with robust and efficient resource allocation. Poor allocation of these resources can lead to a worse situation than the cloud. In this paper, a hybrid Marine Predatory and Particle Swarm Optimization Algorithm (MPA–PSO) is proposed for optimal resource allocation. The MPA–PSO algorithm takes advantage of the effectiveness and reliability of the global and local search abilities of the Particle Swarm Optimization Algorithm (PSO) to improve the suboptimal global search ability of the MPA. This enhances the other steps in the MPA to ensure an optimal solution. The proposed MPA–PSO algorithm was implemented using MATLAB alongside the conventional PSO and MPA, and the proposed MPA–PSO recorded a significant improvement over the PSO and MPA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
非而者厚应助纳斯达克采纳,获得10
1秒前
聪慧小霜应助纳斯达克采纳,获得10
1秒前
1秒前
1秒前
聪慧小霜应助纳斯达克采纳,获得10
2秒前
生动梦松应助纳斯达克采纳,获得30
2秒前
天天快乐应助纳斯达克采纳,获得20
2秒前
2秒前
hhhhuo完成签到,获得积分10
2秒前
luochen发布了新的文献求助10
2秒前
2秒前
关关小闲完成签到 ,获得积分10
3秒前
周煜锦发布了新的文献求助10
3秒前
CYH发布了新的文献求助10
4秒前
科研狗完成签到,获得积分10
4秒前
4秒前
4秒前
灰灰给灰灰的求助进行了留言
4秒前
glacier完成签到,获得积分10
4秒前
甜美白昼发布了新的文献求助10
4秒前
毛豆爸爸发布了新的文献求助10
4秒前
5秒前
5秒前
。。。完成签到,获得积分10
5秒前
6秒前
xiaohu发布了新的文献求助10
6秒前
ding应助干饭搞科研采纳,获得30
6秒前
6秒前
6秒前
DJ发布了新的文献求助30
6秒前
柯学家完成签到,获得积分10
7秒前
7秒前
小鹿发布了新的文献求助10
8秒前
8秒前
在望发布了新的文献求助10
8秒前
复杂平凡完成签到,获得积分10
8秒前
HaitaoLiu关注了科研通微信公众号
8秒前
8秒前
阿刁发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576795
求助须知:如何正确求助?哪些是违规求助? 3995951
关于积分的说明 12370915
捐赠科研通 3670012
什么是DOI,文献DOI怎么找? 2022527
邀请新用户注册赠送积分活动 1056628
科研通“疑难数据库(出版商)”最低求助积分说明 943794