作者
Liang Li,Jia Chen,Jing Xiao,Hongdeng Qiu
摘要
With the continuous development of industrialization, the excessive emission of nitro aromatic with strong toxicity, high carcinogenicity and non-degradability has attracted great attention. How to efficiently remove nitro aromatic pollutants is an important research topic. In this work, graphene oxide/covalent organic frameworks (GO/COFs) composites were successfully synthesized via interlayer confinement strategy selecting GO, 2,5-dimethoxybenzene-1,4-dicarboxaldehyde (DMTP) and 1,3,5-tri(4-aminophenyl)benzene (TPB) as raw materials. Due to high specific surface area, hierarchical porous structure and good thermal stability, GO/COFs were utilized to adsorb and remove nitro aromatic hydrocarbons in the water environment. The adsorption behavior of GO/COFs for o-nitrophenol, 1,3-dinitrobenzene and 2,4,6-trinitrophenol were further investigated. The GO/COFs composites showed the strongest adsorption capacity for 2,4,6-trinitrophenol, and the maximum adsorption capacity for 2,4,6-trinitrophenol, o-nitrophenol, and 1,3-dinitrobenzene were 438, 317, and 173 mg g