SFL-TUM: Energy Efficient SFRL method for Large Scale AI Model's Task Offloading in UAV-Assisted MEC Networks

计算机科学 任务(项目管理) 比例(比率) 能量(信号处理) 人工智能 统计 系统工程 数学 量子力学 物理 工程类
作者
Prakhar Consul,Ishan Budhiraja,Deepak Garg,Sahil Garg,Georges Kaddoum,Mohammad Mehedi Hassan
出处
期刊:Vehicular Communications [Elsevier]
卷期号:48: 100790-100790
标识
DOI:10.1016/j.vehcom.2024.100790
摘要

The convergence of mobile edge computing (MEC) network with unmanned aerial vehicles (UAVs) presents an auspicious opportunity to revolutionize wireless communication and facilitate high-speed internet access in remote regions for mobile devices (MDs) as well as large scale artificial intelligence (AI) models. However, the substantial amount of data produced by the UAVs-assisted MEC network necessitates the integration of efficient distributed learning techniques in AI models. In recent times, distributed learning algorithms, including federated reinforcement learning (FRL) and split learning (SL), have been explored for the purpose of learning machine learning (ML) models that are distributed by sharing model parameters, as opposed to large raw data-sets as seen in traditional centralized learning algorithms. To implement the hybrid method, the model is first trained locally on each UAV-assisted MEC network using SL. Subsequently, the model parameters that have been encrypted are sent to a central server for federated averaging. Finally, after the model has been updated, it is distributed to each UAV-assisted MEC network for local fine-tuning. Our simulations indicate that the proposed split and federated reinforcement learning (SFRL) framework yields comparable high-test accuracy performance while consuming less energy compared to extant distributed learning algorithms. Furthermore, the SFRL algorithm efficiently realizes energy-efficient selection between the SL and FRL methods under different distributions. Numerical results shows that the proposed scheme improves the accuracy by 29.31% and reduced the energy consumption by around 67.34% and time delay by about 7.37%. as compared to the existing baseline schemes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助宇文听南采纳,获得10
刚刚
1秒前
1秒前
卡酷一完成签到 ,获得积分10
1秒前
传奇3应助亓大大采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
CodeCraft应助ZHAOyifan采纳,获得10
4秒前
5秒前
5秒前
5秒前
kiki完成签到 ,获得积分10
5秒前
whykm91发布了新的文献求助10
6秒前
6秒前
成就的幻竹完成签到,获得积分10
6秒前
Jia发布了新的文献求助10
7秒前
游泳的虾饺完成签到,获得积分10
7秒前
科目三应助可靠的寒风采纳,获得10
7秒前
可爱的函函应助芝士采纳,获得10
8秒前
CipherSage应助芝士采纳,获得10
8秒前
orixero应助芝士采纳,获得10
8秒前
领导范儿应助芝士采纳,获得10
8秒前
ding应助芝士采纳,获得10
8秒前
小蘑菇应助芝士采纳,获得10
8秒前
李爱国应助芝士采纳,获得10
8秒前
Yang2完成签到,获得积分10
9秒前
9秒前
9秒前
Akim应助失眠毛衣采纳,获得10
9秒前
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
11秒前
123456完成签到,获得积分10
11秒前
11秒前
我要去看星星完成签到 ,获得积分10
11秒前
Jasper应助LTHT采纳,获得10
12秒前
Gongl完成签到,获得积分10
12秒前
荷兰猪发布了新的文献求助10
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743528
求助须知:如何正确求助?哪些是违规求助? 5414569
关于积分的说明 15347814
捐赠科研通 4884209
什么是DOI,文献DOI怎么找? 2625665
邀请新用户注册赠送积分活动 1574515
关于科研通互助平台的介绍 1531418