SFL-TUM: Energy Efficient SFRL method for Large Scale AI Model's Task Offloading in UAV-Assisted MEC Networks

计算机科学 任务(项目管理) 比例(比率) 能量(信号处理) 人工智能 统计 系统工程 数学 量子力学 物理 工程类
作者
Prakhar Consul,Ishan Budhiraja,Deepak Garg,Sahil Garg,Georges Kaddoum,Mohammad Mehedi Hassan
出处
期刊:Vehicular Communications [Elsevier]
卷期号:48: 100790-100790
标识
DOI:10.1016/j.vehcom.2024.100790
摘要

The convergence of mobile edge computing (MEC) network with unmanned aerial vehicles (UAVs) presents an auspicious opportunity to revolutionize wireless communication and facilitate high-speed internet access in remote regions for mobile devices (MDs) as well as large scale artificial intelligence (AI) models. However, the substantial amount of data produced by the UAVs-assisted MEC network necessitates the integration of efficient distributed learning techniques in AI models. In recent times, distributed learning algorithms, including federated reinforcement learning (FRL) and split learning (SL), have been explored for the purpose of learning machine learning (ML) models that are distributed by sharing model parameters, as opposed to large raw data-sets as seen in traditional centralized learning algorithms. To implement the hybrid method, the model is first trained locally on each UAV-assisted MEC network using SL. Subsequently, the model parameters that have been encrypted are sent to a central server for federated averaging. Finally, after the model has been updated, it is distributed to each UAV-assisted MEC network for local fine-tuning. Our simulations indicate that the proposed split and federated reinforcement learning (SFRL) framework yields comparable high-test accuracy performance while consuming less energy compared to extant distributed learning algorithms. Furthermore, the SFRL algorithm efficiently realizes energy-efficient selection between the SL and FRL methods under different distributions. Numerical results shows that the proposed scheme improves the accuracy by 29.31% and reduced the energy consumption by around 67.34% and time delay by about 7.37%. as compared to the existing baseline schemes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
2秒前
4秒前
上官若男应助zh1858f采纳,获得10
5秒前
xiaoxioayixi发布了新的文献求助10
6秒前
高天雨发布了新的文献求助10
6秒前
Ecokarster发布了新的文献求助10
8秒前
8秒前
isvv发布了新的文献求助20
11秒前
Jasper应助义气的羽毛采纳,获得10
12秒前
KY完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
天天完成签到,获得积分10
13秒前
原野发布了新的文献求助10
13秒前
海人完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
小马甲应助qqqqqq采纳,获得10
16秒前
16秒前
17秒前
Rain完成签到,获得积分10
17秒前
科目三应助liuying采纳,获得10
17秒前
www268完成签到,获得积分10
17秒前
Ecokarster完成签到,获得积分10
20秒前
20秒前
22秒前
共享精神应助Guo采纳,获得10
22秒前
英俊的铭应助诚心黑夜采纳,获得10
22秒前
23秒前
23秒前
billevans发布了新的文献求助30
23秒前
24秒前
大个应助fengjingjing采纳,获得10
24秒前
科研通AI6.1应助DG采纳,获得10
26秒前
Criminology34举报ewbo求助涉嫌违规
26秒前
风趣烤鸡完成签到,获得积分10
26秒前
26秒前
隐形曼青应助xw采纳,获得10
27秒前
科研通AI6.1应助aoi采纳,获得10
28秒前
DJY发布了新的文献求助10
28秒前
花海完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785240
求助须知:如何正确求助?哪些是违规求助? 5686798
关于积分的说明 15467120
捐赠科研通 4914318
什么是DOI,文献DOI怎么找? 2645181
邀请新用户注册赠送积分活动 1592988
关于科研通互助平台的介绍 1547323