SFL-TUM: Energy Efficient SFRL method for Large Scale AI Model's Task Offloading in UAV-Assisted MEC Networks

计算机科学 任务(项目管理) 比例(比率) 能量(信号处理) 人工智能 统计 系统工程 物理 数学 量子力学 工程类
作者
Prakhar Consul,Ishan Budhiraja,Deepak Garg,Sahil Garg,Georges Kaddoum,Mohammad Mehedi Hassan
出处
期刊:Vehicular Communications [Elsevier BV]
卷期号:48: 100790-100790
标识
DOI:10.1016/j.vehcom.2024.100790
摘要

The convergence of mobile edge computing (MEC) network with unmanned aerial vehicles (UAVs) presents an auspicious opportunity to revolutionize wireless communication and facilitate high-speed internet access in remote regions for mobile devices (MDs) as well as large scale artificial intelligence (AI) models. However, the substantial amount of data produced by the UAVs-assisted MEC network necessitates the integration of efficient distributed learning techniques in AI models. In recent times, distributed learning algorithms, including federated reinforcement learning (FRL) and split learning (SL), have been explored for the purpose of learning machine learning (ML) models that are distributed by sharing model parameters, as opposed to large raw data-sets as seen in traditional centralized learning algorithms. To implement the hybrid method, the model is first trained locally on each UAV-assisted MEC network using SL. Subsequently, the model parameters that have been encrypted are sent to a central server for federated averaging. Finally, after the model has been updated, it is distributed to each UAV-assisted MEC network for local fine-tuning. Our simulations indicate that the proposed split and federated reinforcement learning (SFRL) framework yields comparable high-test accuracy performance while consuming less energy compared to extant distributed learning algorithms. Furthermore, the SFRL algorithm efficiently realizes energy-efficient selection between the SL and FRL methods under different distributions. Numerical results shows that the proposed scheme improves the accuracy by 29.31% and reduced the energy consumption by around 67.34% and time delay by about 7.37%. as compared to the existing baseline schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辛勤的莹芝完成签到,获得积分10
刚刚
负责的高烽完成签到,获得积分20
刚刚
mymEN发布了新的文献求助10
1秒前
烂漫冰烟发布了新的文献求助20
2秒前
Yuann发布了新的文献求助10
2秒前
callmecarlos完成签到,获得积分10
2秒前
某某.发布了新的文献求助10
2秒前
yy发布了新的文献求助10
3秒前
紧张的书文完成签到 ,获得积分10
3秒前
3秒前
完美世界应助曾经信封采纳,获得10
4秒前
5秒前
5秒前
王不会科研完成签到,获得积分10
5秒前
jasonjiang完成签到 ,获得积分0
6秒前
糖糖完成签到,获得积分10
6秒前
7秒前
丁丁丁发布了新的文献求助10
7秒前
某某.完成签到,获得积分10
8秒前
8秒前
糖糖发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助20
10秒前
10秒前
11秒前
Light_dreamer探索者完成签到 ,获得积分10
12秒前
狂野台灯完成签到,获得积分10
13秒前
13秒前
优雅冷霜完成签到 ,获得积分10
15秒前
俭朴的三德完成签到,获得积分10
15秒前
yuke发布了新的文献求助10
15秒前
个性冰海完成签到,获得积分10
16秒前
小次郎发布了新的文献求助10
17秒前
17秒前
17秒前
Iuu发布了新的文献求助10
17秒前
小二郎应助白河夜船采纳,获得10
18秒前
yy完成签到,获得积分10
18秒前
18秒前
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Selected papers II : with commentaries 1000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5062637
求助须知:如何正确求助?哪些是违规求助? 4286396
关于积分的说明 13356994
捐赠科研通 4104212
什么是DOI,文献DOI怎么找? 2247379
邀请新用户注册赠送积分活动 1252944
关于科研通互助平台的介绍 1183868