SFL-TUM: Energy Efficient SFRL method for Large Scale AI Model's Task Offloading in UAV-Assisted MEC Networks

计算机科学 任务(项目管理) 比例(比率) 能量(信号处理) 人工智能 统计 系统工程 物理 数学 量子力学 工程类
作者
Prakhar Consul,Ishan Budhiraja,Deepak Garg,Sahil Garg,Georges Kaddoum,Mohammad Mehedi Hassan
出处
期刊:Vehicular Communications [Elsevier]
卷期号:48: 100790-100790
标识
DOI:10.1016/j.vehcom.2024.100790
摘要

The convergence of mobile edge computing (MEC) network with unmanned aerial vehicles (UAVs) presents an auspicious opportunity to revolutionize wireless communication and facilitate high-speed internet access in remote regions for mobile devices (MDs) as well as large scale artificial intelligence (AI) models. However, the substantial amount of data produced by the UAVs-assisted MEC network necessitates the integration of efficient distributed learning techniques in AI models. In recent times, distributed learning algorithms, including federated reinforcement learning (FRL) and split learning (SL), have been explored for the purpose of learning machine learning (ML) models that are distributed by sharing model parameters, as opposed to large raw data-sets as seen in traditional centralized learning algorithms. To implement the hybrid method, the model is first trained locally on each UAV-assisted MEC network using SL. Subsequently, the model parameters that have been encrypted are sent to a central server for federated averaging. Finally, after the model has been updated, it is distributed to each UAV-assisted MEC network for local fine-tuning. Our simulations indicate that the proposed split and federated reinforcement learning (SFRL) framework yields comparable high-test accuracy performance while consuming less energy compared to extant distributed learning algorithms. Furthermore, the SFRL algorithm efficiently realizes energy-efficient selection between the SL and FRL methods under different distributions. Numerical results shows that the proposed scheme improves the accuracy by 29.31% and reduced the energy consumption by around 67.34% and time delay by about 7.37%. as compared to the existing baseline schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超级大猩猩完成签到,获得积分10
刚刚
恶鬼也惧十七完成签到,获得积分10
1秒前
SS完成签到,获得积分10
1秒前
skbz完成签到,获得积分10
1秒前
大清发布了新的文献求助10
1秒前
fouli发布了新的文献求助10
1秒前
2秒前
wu发布了新的文献求助10
2秒前
红柚完成签到,获得积分10
2秒前
3秒前
renerzi发布了新的文献求助20
4秒前
4秒前
4秒前
Siney完成签到,获得积分10
4秒前
张益权完成签到,获得积分10
4秒前
Jasper应助翟如风采纳,获得10
4秒前
彳亍1117应助msy采纳,获得10
5秒前
瓜瓜dei完成签到,获得积分10
6秒前
喜悦鹤轩发布了新的文献求助30
6秒前
科研通AI2S应助真理采纳,获得30
6秒前
6秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
苏以亦完成签到,获得积分20
8秒前
拉姆达发布了新的文献求助10
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
ding应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
Yeyuntian发布了新的文献求助10
9秒前
innocence@x完成签到,获得积分10
10秒前
南音完成签到,获得积分10
10秒前
苏以亦发布了新的文献求助10
10秒前
sll完成签到,获得积分10
10秒前
25号底片应助chriselva采纳,获得150
10秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
宽禁带半导体紫外光电探测器 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143406
求助须知:如何正确求助?哪些是违规求助? 2794708
关于积分的说明 7812043
捐赠科研通 2450840
什么是DOI,文献DOI怎么找? 1304134
科研通“疑难数据库(出版商)”最低求助积分说明 627179
版权声明 601386