SFL-TUM: Energy Efficient SFRL method for Large Scale AI Model's Task Offloading in UAV-Assisted MEC Networks

计算机科学 任务(项目管理) 比例(比率) 能量(信号处理) 人工智能 统计 系统工程 物理 数学 量子力学 工程类
作者
Prakhar Consul,Ishan Budhiraja,Deepak Garg,Sahil Garg,Georges Kaddoum,Mohammad Mehedi Hassan
出处
期刊:Vehicular Communications [Elsevier BV]
卷期号:48: 100790-100790
标识
DOI:10.1016/j.vehcom.2024.100790
摘要

The convergence of mobile edge computing (MEC) network with unmanned aerial vehicles (UAVs) presents an auspicious opportunity to revolutionize wireless communication and facilitate high-speed internet access in remote regions for mobile devices (MDs) as well as large scale artificial intelligence (AI) models. However, the substantial amount of data produced by the UAVs-assisted MEC network necessitates the integration of efficient distributed learning techniques in AI models. In recent times, distributed learning algorithms, including federated reinforcement learning (FRL) and split learning (SL), have been explored for the purpose of learning machine learning (ML) models that are distributed by sharing model parameters, as opposed to large raw data-sets as seen in traditional centralized learning algorithms. To implement the hybrid method, the model is first trained locally on each UAV-assisted MEC network using SL. Subsequently, the model parameters that have been encrypted are sent to a central server for federated averaging. Finally, after the model has been updated, it is distributed to each UAV-assisted MEC network for local fine-tuning. Our simulations indicate that the proposed split and federated reinforcement learning (SFRL) framework yields comparable high-test accuracy performance while consuming less energy compared to extant distributed learning algorithms. Furthermore, the SFRL algorithm efficiently realizes energy-efficient selection between the SL and FRL methods under different distributions. Numerical results shows that the proposed scheme improves the accuracy by 29.31% and reduced the energy consumption by around 67.34% and time delay by about 7.37%. as compared to the existing baseline schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乔垣结衣发布了新的文献求助10
刚刚
刚刚
顾矜应助鳗鱼飞松采纳,获得10
刚刚
跳跳妈妈发布了新的文献求助30
1秒前
1秒前
lanxixi完成签到,获得积分10
1秒前
sc完成签到,获得积分10
1秒前
清河海风完成签到,获得积分10
1秒前
naturehome完成签到,获得积分10
2秒前
2秒前
小蘑菇应助124578采纳,获得10
2秒前
shirley完成签到,获得积分10
2秒前
mumu发布了新的文献求助10
3秒前
Link完成签到,获得积分20
3秒前
yar应助可爱香槟采纳,获得10
3秒前
Hello应助东风采纳,获得10
3秒前
蟹浦肉完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
Link发布了新的文献求助30
4秒前
4秒前
Sakura完成签到,获得积分20
5秒前
不安灵竹关注了科研通微信公众号
6秒前
6秒前
赵嘉钰发布了新的文献求助10
6秒前
凌晨幻舞发布了新的文献求助10
6秒前
7秒前
隐形曼青应助欧阳惜筠采纳,获得10
7秒前
毛毛发布了新的文献求助10
7秒前
zcl完成签到,获得积分10
8秒前
时尚战斗机应助Link采纳,获得10
8秒前
Ava应助黄小翰采纳,获得50
8秒前
LMX发布了新的文献求助20
9秒前
乔青完成签到,获得积分10
9秒前
过时的冬易完成签到,获得积分10
10秒前
英俊的铭应助乔leon采纳,获得10
10秒前
pride发布了新的文献求助10
11秒前
烟花应助selfevidbet采纳,获得10
12秒前
卢小白完成签到,获得积分10
12秒前
CipherSage应助sdl采纳,获得10
13秒前
chestnut灬完成签到 ,获得积分10
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978526
求助须知:如何正确求助?哪些是违规求助? 3522634
关于积分的说明 11214133
捐赠科研通 3260065
什么是DOI,文献DOI怎么找? 1799744
邀请新用户注册赠送积分活动 878642
科研通“疑难数据库(出版商)”最低求助积分说明 807002