Shallow Neural Networks for Unmanned Aerial Vehicles Data Traffic Classification

概率神经网络 计算机科学 人工神经网络 人工智能 循环神经网络 时滞神经网络 前馈神经网络 模式识别(心理学) 交叉验证 特征提取 特征(语言学) 特征选择 语言学 哲学
作者
Inna Valieva,Iurii Voitenko
标识
DOI:10.1109/fnwf58287.2023.10520364
摘要

In this paper, the classification of Unmanned Aerial Vehicles (UAV) data traffic into three distinct classes: analog video, digital OFDM-modulated video, and Additive White Gaus-sian Noise (AWGN) has been performed employing six neural network classifiers including Feed Forward Neural Network (FFNN), Generalized Regression Neural Network (GRNN), and Probabilistic Neural Network (PNN); and Cascade Forward Neural Network (CFNN), Recurrent Neural Network (RNN) and multilayer perceptron neural network (NN). The data set composed of the time domain signal samples for classifiers' training, validation, and testing has been collected in the controlled exper-iment conducted in the office/lab environment with the stationary signal source and receiver. The subset of twenty-four extracted features has been used as input to the neural network classifiers. Feature reduction has been performed using four popular in literature feature selection algorithms: Minimum Redundancy Maximum Relevance (MRMR), Neighborhood Component Anal-ysis (NCA), Relief, and Laplacian score to enhance computational efficiency and prediction speed for hardware implementation and real-time operation on the target CPU. Four features including mean, standard deviation, and median absolute deviation of the time domain signal, and RSSI have been selected. Six neural network classifiers have been trained using both the full and reduced feature sets. Also, two validation algorithms: k-fold cross-validation and hold-out validation have been evaluated. The Recurrent Neural Network (RNN) has demonstrated the highest accuracy using the full feature set and employing cross-validation. The feature reduction has led to a 3 % decrease in accuracy for RNN. Feedforward Neural Network (FFNN) has demonstrated the highest accuracy of 93.51 % with the reduced feature set input using cross-validation on PC in Matlab environment. It has been prototyped on our target hardware CPU using Mathworks Embedded Coder; the generated C code has been deployed on ARM Cortex CPU. FFNN using four feature inputs has demonstrated an accuracy of 91.23 % in real-time testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林小雨发布了新的文献求助10
刚刚
Bellona完成签到,获得积分10
刚刚
清嘉完成签到,获得积分10
刚刚
ZZY完成签到,获得积分10
1秒前
1秒前
魁梧的钧发布了新的文献求助20
1秒前
Fishchips发布了新的文献求助10
1秒前
1秒前
SciGPT应助tS717采纳,获得10
2秒前
自觉的涵易完成签到 ,获得积分10
2秒前
Hello应助自由南珍采纳,获得10
3秒前
苹果煎饼完成签到,获得积分10
4秒前
4秒前
杨小冬发布了新的文献求助10
4秒前
倒霉蛋完成签到,获得积分10
5秒前
庄严发布了新的文献求助10
5秒前
2401发布了新的文献求助10
5秒前
5秒前
5秒前
zhaoqing完成签到,获得积分10
6秒前
6秒前
充电宝应助han采纳,获得10
7秒前
8秒前
ajiduo发布了新的文献求助10
9秒前
聿潇发布了新的文献求助10
10秒前
10秒前
华枝春满发布了新的文献求助10
10秒前
Islet1810发布了新的文献求助10
11秒前
11秒前
两米七发布了新的文献求助20
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
清脆青槐完成签到 ,获得积分10
15秒前
舒适花瓣发布了新的文献求助10
15秒前
luwenbin发布了新的文献求助10
16秒前
丘比特应助YF采纳,获得10
17秒前
游悠悠发布了新的文献求助10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406668
求助须知:如何正确求助?哪些是违规求助? 4524470
关于积分的说明 14098590
捐赠科研通 4438297
什么是DOI,文献DOI怎么找? 2436104
邀请新用户注册赠送积分活动 1428223
关于科研通互助平台的介绍 1406294