Shallow Neural Networks for Unmanned Aerial Vehicles Data Traffic Classification

概率神经网络 计算机科学 人工神经网络 人工智能 循环神经网络 时滞神经网络 前馈神经网络 模式识别(心理学) 交叉验证 特征提取 特征(语言学) 特征选择 语言学 哲学
作者
Inna Valieva,Iurii Voitenko
标识
DOI:10.1109/fnwf58287.2023.10520364
摘要

In this paper, the classification of Unmanned Aerial Vehicles (UAV) data traffic into three distinct classes: analog video, digital OFDM-modulated video, and Additive White Gaus-sian Noise (AWGN) has been performed employing six neural network classifiers including Feed Forward Neural Network (FFNN), Generalized Regression Neural Network (GRNN), and Probabilistic Neural Network (PNN); and Cascade Forward Neural Network (CFNN), Recurrent Neural Network (RNN) and multilayer perceptron neural network (NN). The data set composed of the time domain signal samples for classifiers' training, validation, and testing has been collected in the controlled exper-iment conducted in the office/lab environment with the stationary signal source and receiver. The subset of twenty-four extracted features has been used as input to the neural network classifiers. Feature reduction has been performed using four popular in literature feature selection algorithms: Minimum Redundancy Maximum Relevance (MRMR), Neighborhood Component Anal-ysis (NCA), Relief, and Laplacian score to enhance computational efficiency and prediction speed for hardware implementation and real-time operation on the target CPU. Four features including mean, standard deviation, and median absolute deviation of the time domain signal, and RSSI have been selected. Six neural network classifiers have been trained using both the full and reduced feature sets. Also, two validation algorithms: k-fold cross-validation and hold-out validation have been evaluated. The Recurrent Neural Network (RNN) has demonstrated the highest accuracy using the full feature set and employing cross-validation. The feature reduction has led to a 3 % decrease in accuracy for RNN. Feedforward Neural Network (FFNN) has demonstrated the highest accuracy of 93.51 % with the reduced feature set input using cross-validation on PC in Matlab environment. It has been prototyped on our target hardware CPU using Mathworks Embedded Coder; the generated C code has been deployed on ARM Cortex CPU. FFNN using four feature inputs has demonstrated an accuracy of 91.23 % in real-time testing.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李雨完成签到,获得积分10
刚刚
wuta完成签到,获得积分10
刚刚
Akim应助超表面采纳,获得10
刚刚
刚刚
A_Caterpillar完成签到,获得积分10
刚刚
1秒前
香蕉诗蕊应助莫愁采纳,获得10
2秒前
mengna完成签到,获得积分10
2秒前
温纲完成签到,获得积分10
3秒前
Amber完成签到,获得积分10
3秒前
4秒前
大力牌皮揣子完成签到 ,获得积分10
4秒前
赵西里完成签到,获得积分10
4秒前
expuery完成签到,获得积分10
5秒前
Dellamoffy完成签到,获得积分10
5秒前
Glileo完成签到 ,获得积分10
5秒前
5秒前
熊猫完成签到,获得积分10
5秒前
xuxuxuuxuxux完成签到,获得积分10
6秒前
阔达的海完成签到,获得积分10
6秒前
loosewires发布了新的文献求助10
6秒前
6秒前
dm完成签到,获得积分10
7秒前
7秒前
chen完成签到,获得积分10
7秒前
闲鸢完成签到,获得积分10
7秒前
8秒前
朴素梦蕊完成签到 ,获得积分10
8秒前
youyating完成签到,获得积分10
8秒前
熊猫发布了新的文献求助20
8秒前
嘻嘻完成签到,获得积分20
8秒前
量子星尘发布了新的文献求助10
9秒前
Galaxy完成签到,获得积分10
9秒前
浮游应助深情冷雪采纳,获得10
9秒前
潇洒的千雁完成签到,获得积分10
10秒前
星辉发布了新的文献求助10
10秒前
10秒前
AA完成签到,获得积分10
10秒前
yuxiao发布了新的文献求助10
11秒前
梦鱼完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645431
求助须知:如何正确求助?哪些是违规求助? 4768803
关于积分的说明 15028908
捐赠科研通 4804012
什么是DOI,文献DOI怎么找? 2568656
邀请新用户注册赠送积分活动 1525914
关于科研通互助平台的介绍 1485570