Shallow Neural Networks for Unmanned Aerial Vehicles Data Traffic Classification

概率神经网络 计算机科学 人工神经网络 人工智能 循环神经网络 时滞神经网络 前馈神经网络 模式识别(心理学) 交叉验证 特征提取 特征(语言学) 特征选择 语言学 哲学
作者
Inna Valieva,Iurii Voitenko
标识
DOI:10.1109/fnwf58287.2023.10520364
摘要

In this paper, the classification of Unmanned Aerial Vehicles (UAV) data traffic into three distinct classes: analog video, digital OFDM-modulated video, and Additive White Gaus-sian Noise (AWGN) has been performed employing six neural network classifiers including Feed Forward Neural Network (FFNN), Generalized Regression Neural Network (GRNN), and Probabilistic Neural Network (PNN); and Cascade Forward Neural Network (CFNN), Recurrent Neural Network (RNN) and multilayer perceptron neural network (NN). The data set composed of the time domain signal samples for classifiers' training, validation, and testing has been collected in the controlled exper-iment conducted in the office/lab environment with the stationary signal source and receiver. The subset of twenty-four extracted features has been used as input to the neural network classifiers. Feature reduction has been performed using four popular in literature feature selection algorithms: Minimum Redundancy Maximum Relevance (MRMR), Neighborhood Component Anal-ysis (NCA), Relief, and Laplacian score to enhance computational efficiency and prediction speed for hardware implementation and real-time operation on the target CPU. Four features including mean, standard deviation, and median absolute deviation of the time domain signal, and RSSI have been selected. Six neural network classifiers have been trained using both the full and reduced feature sets. Also, two validation algorithms: k-fold cross-validation and hold-out validation have been evaluated. The Recurrent Neural Network (RNN) has demonstrated the highest accuracy using the full feature set and employing cross-validation. The feature reduction has led to a 3 % decrease in accuracy for RNN. Feedforward Neural Network (FFNN) has demonstrated the highest accuracy of 93.51 % with the reduced feature set input using cross-validation on PC in Matlab environment. It has been prototyped on our target hardware CPU using Mathworks Embedded Coder; the generated C code has been deployed on ARM Cortex CPU. FFNN using four feature inputs has demonstrated an accuracy of 91.23 % in real-time testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
巴斯光年完成签到,获得积分20
刚刚
自行输入昵称完成签到 ,获得积分10
1秒前
cheng发布了新的文献求助10
2秒前
down完成签到,获得积分10
2秒前
儿学化学打断腿完成签到,获得积分10
5秒前
野性的映菱完成签到,获得积分10
7秒前
Rondab应助down采纳,获得10
10秒前
舒服的初蓝完成签到,获得积分10
10秒前
斯文败类应助小涛采纳,获得10
12秒前
chuckle完成签到,获得积分10
13秒前
13秒前
眼圆广志完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
15秒前
可爱的函函应助lignin采纳,获得10
15秒前
mark发布了新的文献求助10
17秒前
19秒前
21秒前
眼睛大雨筠应助AI imaging采纳,获得50
25秒前
方羽发布了新的文献求助10
26秒前
小涛完成签到,获得积分10
27秒前
27秒前
汤姆完成签到,获得积分10
29秒前
脑洞疼应助Arjun采纳,获得10
30秒前
yin完成签到 ,获得积分10
31秒前
aich完成签到,获得积分10
31秒前
Dada应助明亮小馒头采纳,获得30
31秒前
32秒前
Jacky发布了新的文献求助10
33秒前
小松鼠完成签到 ,获得积分10
34秒前
haocong完成签到 ,获得积分10
35秒前
yayika完成签到 ,获得积分10
35秒前
疏才完成签到,获得积分10
36秒前
Ciri完成签到,获得积分10
37秒前
38秒前
Arjun完成签到,获得积分10
39秒前
39秒前
Arjun发布了新的文献求助10
41秒前
FashionBoy应助一一一采纳,获得10
43秒前
43秒前
44秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954416
求助须知:如何正确求助?哪些是违规求助? 3500394
关于积分的说明 11099388
捐赠科研通 3230962
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869852
科研通“疑难数据库(出版商)”最低求助积分说明 801689