Shallow Neural Networks for Unmanned Aerial Vehicles Data Traffic Classification

概率神经网络 计算机科学 人工神经网络 人工智能 循环神经网络 时滞神经网络 前馈神经网络 模式识别(心理学) 交叉验证 特征提取 特征(语言学) 特征选择 语言学 哲学
作者
Inna Valieva,Iurii Voitenko
标识
DOI:10.1109/fnwf58287.2023.10520364
摘要

In this paper, the classification of Unmanned Aerial Vehicles (UAV) data traffic into three distinct classes: analog video, digital OFDM-modulated video, and Additive White Gaus-sian Noise (AWGN) has been performed employing six neural network classifiers including Feed Forward Neural Network (FFNN), Generalized Regression Neural Network (GRNN), and Probabilistic Neural Network (PNN); and Cascade Forward Neural Network (CFNN), Recurrent Neural Network (RNN) and multilayer perceptron neural network (NN). The data set composed of the time domain signal samples for classifiers' training, validation, and testing has been collected in the controlled exper-iment conducted in the office/lab environment with the stationary signal source and receiver. The subset of twenty-four extracted features has been used as input to the neural network classifiers. Feature reduction has been performed using four popular in literature feature selection algorithms: Minimum Redundancy Maximum Relevance (MRMR), Neighborhood Component Anal-ysis (NCA), Relief, and Laplacian score to enhance computational efficiency and prediction speed for hardware implementation and real-time operation on the target CPU. Four features including mean, standard deviation, and median absolute deviation of the time domain signal, and RSSI have been selected. Six neural network classifiers have been trained using both the full and reduced feature sets. Also, two validation algorithms: k-fold cross-validation and hold-out validation have been evaluated. The Recurrent Neural Network (RNN) has demonstrated the highest accuracy using the full feature set and employing cross-validation. The feature reduction has led to a 3 % decrease in accuracy for RNN. Feedforward Neural Network (FFNN) has demonstrated the highest accuracy of 93.51 % with the reduced feature set input using cross-validation on PC in Matlab environment. It has been prototyped on our target hardware CPU using Mathworks Embedded Coder; the generated C code has been deployed on ARM Cortex CPU. FFNN using four feature inputs has demonstrated an accuracy of 91.23 % in real-time testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助keyanbaicai采纳,获得10
1秒前
1秒前
hahaha完成签到,获得积分10
1秒前
PhD-SCAU完成签到,获得积分10
1秒前
小牛同志完成签到,获得积分10
2秒前
3秒前
NMR发布了新的文献求助30
3秒前
LSY28发布了新的文献求助10
4秒前
大钱哥完成签到,获得积分10
4秒前
4秒前
希望天下0贩的0应助ddddddd采纳,获得10
5秒前
qwe1108完成签到 ,获得积分10
5秒前
付创完成签到,获得积分10
6秒前
大模型应助新贵采纳,获得10
6秒前
kaixinjh1234发布了新的文献求助10
6秒前
7秒前
7秒前
专注鸣凤完成签到,获得积分10
8秒前
10秒前
cocolu应助WALLE采纳,获得10
10秒前
Ava应助Hettl采纳,获得10
11秒前
11秒前
打打应助AZN采纳,获得10
12秒前
虚幻沛菡发布了新的文献求助10
12秒前
水云间发布了新的文献求助10
12秒前
yy湫发布了新的文献求助10
13秒前
慕青应助衣带渐宽终不悔采纳,获得10
13秒前
小兔完成签到 ,获得积分10
15秒前
15秒前
令狐晓博完成签到,获得积分0
15秒前
jcduoduo完成签到,获得积分10
17秒前
17秒前
李存完成签到,获得积分10
19秒前
LSY28完成签到,获得积分10
20秒前
20秒前
电气工人完成签到,获得积分10
20秒前
Dong完成签到 ,获得积分10
20秒前
22秒前
李爱国应助sci_zt采纳,获得10
22秒前
清秀紫南完成签到 ,获得积分10
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3311924
求助须知:如何正确求助?哪些是违规求助? 2944704
关于积分的说明 8520803
捐赠科研通 2620313
什么是DOI,文献DOI怎么找? 1432777
科研通“疑难数据库(出版商)”最低求助积分说明 664762
邀请新用户注册赠送积分活动 650077