亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparison for thermal imager performance assessment: TOD classifier versus YOLO-based models for object detection

分类器(UML) 计算机科学 人工智能 目标检测 模式识别(心理学) 计算机视觉
作者
Daniel Wegner,Stefan Keßler
标识
DOI:10.1117/12.3013706
摘要

Models for triangle orientation discrimination (TOD) have been proposed for performance evaluation of thermal imaging devices. For thermal imager assessment, human visual systems for TOD have been modeled and rigorously validated for a wide variety of image distortions through observer studies. As the conduct of observer trials is time-consuming and costly, also AI-based TOD models for imager assessment have been presented. Recently, camera systems with embedded automatic target recognition (ATR) are becoming increasingly important. So far it is an open question if the simple TOD task, as a classification problem with 4 classes, is suitable for providing similar evaluations and rankings for these thermal imaging devices as algorithms for more complex and slower tasks like object detection, e.g. for ATR. A widely used framework for object detection is "You Only Look Once" (YOLO).

In this work, performance assessments for TOD models and YOLO-based models are compared. Known image databases as well as synthetic images with triangles and natural backgrounds are degraded according to a unified device description with blur and image noise. The blur caused by optical diffraction and detector footprint is varied by multiple aperture diameters and detector sizes through the application of modulation transfer functions, while the image noise is varied by multiple noise error levels as Gaussian sensor noise. The TOD models are evaluated for the degraded images with triangles, while the YOLO models are applied to the degraded variants of the image databases. For different degradation parameters, the model precisions of the TOD models are compared to figures of merit of the YOLO models such as the mean average precision (mAP). Statistical uncertainties of the performance ranking for different degradation parameters of cameras and both TOD and YOLO models are investigated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助交钱上班采纳,获得10
6秒前
专一的芒果完成签到 ,获得积分10
1分钟前
ZXD1989完成签到 ,获得积分10
1分钟前
2分钟前
交钱上班发布了新的文献求助10
2分钟前
4分钟前
姚老表完成签到,获得积分10
4分钟前
4分钟前
香蕉觅云应助端庄的饼干采纳,获得10
4分钟前
端庄的饼干完成签到,获得积分20
4分钟前
科研通AI2S应助spark810采纳,获得10
7分钟前
8分钟前
9分钟前
凭风听纸鸢完成签到,获得积分10
10分钟前
mengliu完成签到,获得积分10
10分钟前
kuoping完成签到,获得积分10
10分钟前
无花果应助科研通管家采纳,获得10
11分钟前
ling361完成签到,获得积分10
12分钟前
早晚完成签到 ,获得积分10
12分钟前
Mipe完成签到,获得积分10
12分钟前
Demi_Ming完成签到,获得积分10
12分钟前
13分钟前
13分钟前
科研通AI2S应助希勤采纳,获得30
13分钟前
材料虎完成签到,获得积分10
13分钟前
慕青应助材料虎采纳,获得10
13分钟前
13分钟前
材料虎发布了新的文献求助10
13分钟前
xwx发布了新的文献求助10
13分钟前
宽宽完成签到,获得积分10
13分钟前
权灵萱完成签到,获得积分10
14分钟前
天边的云彩完成签到 ,获得积分10
14分钟前
一剑白发布了新的文献求助10
14分钟前
15分钟前
15分钟前
15分钟前
852应助科研通管家采纳,获得10
15分钟前
15分钟前
15分钟前
昼夜发布了新的文献求助10
15分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133970
求助须知:如何正确求助?哪些是违规求助? 2784836
关于积分的说明 7768684
捐赠科研通 2440205
什么是DOI,文献DOI怎么找? 1297295
科研通“疑难数据库(出版商)”最低求助积分说明 624911
版权声明 600791