亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparison for thermal imager performance assessment: TOD classifier versus YOLO-based models for object detection

分类器(UML) 计算机科学 人工智能 目标检测 模式识别(心理学) 计算机视觉
作者
Daniel Wegner,Stefan Keßler
标识
DOI:10.1117/12.3013706
摘要

Models for triangle orientation discrimination (TOD) have been proposed for performance evaluation of thermal imaging devices. For thermal imager assessment, human visual systems for TOD have been modeled and rigorously validated for a wide variety of image distortions through observer studies. As the conduct of observer trials is time-consuming and costly, also AI-based TOD models for imager assessment have been presented. Recently, camera systems with embedded automatic target recognition (ATR) are becoming increasingly important. So far it is an open question if the simple TOD task, as a classification problem with 4 classes, is suitable for providing similar evaluations and rankings for these thermal imaging devices as algorithms for more complex and slower tasks like object detection, e.g. for ATR. A widely used framework for object detection is "You Only Look Once" (YOLO).

In this work, performance assessments for TOD models and YOLO-based models are compared. Known image databases as well as synthetic images with triangles and natural backgrounds are degraded according to a unified device description with blur and image noise. The blur caused by optical diffraction and detector footprint is varied by multiple aperture diameters and detector sizes through the application of modulation transfer functions, while the image noise is varied by multiple noise error levels as Gaussian sensor noise. The TOD models are evaluated for the degraded images with triangles, while the YOLO models are applied to the degraded variants of the image databases. For different degradation parameters, the model precisions of the TOD models are compared to figures of merit of the YOLO models such as the mean average precision (mAP). Statistical uncertainties of the performance ranking for different degradation parameters of cameras and both TOD and YOLO models are investigated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kk完成签到,获得积分20
1秒前
酷酷夏天发布了新的文献求助10
1秒前
共享精神应助居居侠采纳,获得10
3秒前
大力的乐曲完成签到,获得积分10
6秒前
8秒前
ronnie147完成签到 ,获得积分10
9秒前
10秒前
10秒前
杰杰小杰发布了新的文献求助10
13秒前
怡然的诗筠完成签到 ,获得积分10
14秒前
科研通AI5应助qiqi1111采纳,获得10
14秒前
kkkkeira发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
20秒前
20秒前
22秒前
orixero应助铃鸟采纳,获得10
22秒前
kk发布了新的文献求助10
24秒前
mao305发布了新的文献求助10
25秒前
小蘑菇应助olekravchenko采纳,获得30
25秒前
qiqi1111发布了新的文献求助10
26秒前
招水若离完成签到,获得积分0
28秒前
量子星尘发布了新的文献求助10
29秒前
Rave完成签到 ,获得积分10
30秒前
31秒前
李爱国应助baifan采纳,获得10
34秒前
铃鸟发布了新的文献求助10
37秒前
量子星尘发布了新的文献求助10
39秒前
Thea完成签到 ,获得积分10
43秒前
44秒前
传奇3应助科研通管家采纳,获得10
44秒前
orixero应助科研通管家采纳,获得10
44秒前
48秒前
baifan发布了新的文献求助10
48秒前
mao305完成签到,获得积分10
50秒前
铃鸟完成签到,获得积分20
51秒前
量子星尘发布了新的文献求助10
54秒前
baifan完成签到,获得积分10
54秒前
1分钟前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660939
求助须知:如何正确求助?哪些是违规求助? 3222150
关于积分的说明 9743757
捐赠科研通 2931683
什么是DOI,文献DOI怎么找? 1605151
邀请新用户注册赠送积分活动 757705
科研通“疑难数据库(出版商)”最低求助积分说明 734462