Reduced field-of-view DWI based on deep learning reconstruction improving diagnostic accuracy of VI-RADS for evaluating muscle invasion

医学 磁共振弥散成像 核医学 图像质量 磁共振成像 放射科 人工智能 计算机科学 图像(数学)
作者
Xinxin Zhang,Xinming Zhao,Lianyu Zhang,Xinming Zhao,Lianyu Zhang,Lianyu Zhang,Lianyu Zhang,Lianyu Zhang,Xinming Zhao,Lianyu Zhang,Xinming Zhao
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:15 (1)
标识
DOI:10.1186/s13244-024-01686-9
摘要

Abstract Objectives To investigate whether reduced field-of-view (rFOV) diffusion-weighted imaging (DWI) with deep learning reconstruction (DLR) can improve the accuracy of evaluating muscle invasion using VI-RADS. Methods Eighty-six bladder cancer participants who were evaluated by conventional full field-of-view (fFOV) DWI, standard rFOV (rFOV STA ) DWI, and fast rFOV with DLR (rFOV DLR ) DWI were included in this prospective study. Tumors were categorized according to the vesical imaging reporting and data system (VI-RADS). Qualitative image quality scoring, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and ADC value were evaluated. Friedman test with post hoc test revealed the difference across the three DWIs. Receiver operating characteristic analysis was performed to calculate the areas under the curve (AUCs). Results The AUC of the rFOV STA DWI and rFOV DLR DWI were higher than that of fFOV DWI. rFOV DLR DWI reduced the acquisition time from 5:02 min to 3:25 min, and showed higher scores in overall image quality with higher CNR and SNR, compared to rFOV STA DWI ( p < 0.05). The mean ADC of all cases of rFOV STA DWI and rFOV DLR DWI was significantly lower than that of fFOV DWI (all p < 0.05). There was no difference in mean ADC value and the AUC for evaluating muscle invasion between rFOV STA DWI and rFOV DLR DWI ( p > 0.05). Conclusions rFOV DWI with DLR can improve the diagnostic accuracy of fFOV DWI for evaluating muscle invasion. Applying DLR to rFOV DWI reduced the acquisition time and improved overall image quality while maintaining ADC value and diagnostic accuracy. Critical relevance statement The diagnostic performance and image quality of full field-of-view DWI, reduced field-of-view (rFOV) DWI with and without DLR were compared. DLR would benefit the wide clinical application of rFOV DWI by reducing the acquisition time and improving the image quality. Key Points Deep learning reconstruction (DLR) can reduce scan time and improve image quality. Reduced field-of-view (rFOV) diffusion-weighted imaging (DWI) with DLR showed better diagnostic performances than full field-of-view DWI. There was no difference of diagnostic accuracy between rFOV DWI with DLR and standard rFOV DWI. Graphical Abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
了晨完成签到 ,获得积分10
1秒前
小xy完成签到,获得积分10
1秒前
2秒前
小昼完成签到 ,获得积分10
2秒前
尊敬的完成签到,获得积分10
3秒前
3秒前
整齐海秋完成签到,获得积分10
3秒前
3秒前
善学以致用应助白榆采纳,获得10
3秒前
JamesPei应助易达采纳,获得10
4秒前
4秒前
4秒前
圣晟胜发布了新的文献求助10
4秒前
xx发布了新的文献求助10
5秒前
忧郁觅柔完成签到 ,获得积分10
5秒前
追寻夜香发布了新的文献求助10
5秒前
昊康好完成签到,获得积分10
5秒前
6秒前
yy完成签到,获得积分10
6秒前
7秒前
缓慢天抒完成签到 ,获得积分10
7秒前
科研通AI5应助路之遥兮采纳,获得10
7秒前
爱睡觉的亮亮完成签到,获得积分10
8秒前
圈圈发布了新的文献求助10
8秒前
顾矜应助无聊先知采纳,获得10
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
咕咕咕完成签到,获得积分10
9秒前
经法发布了新的文献求助10
10秒前
晚亭完成签到,获得积分10
10秒前
欲望被鬼举报戚薇求助涉嫌违规
11秒前
yangyang发布了新的文献求助10
11秒前
优雅的琳发布了新的文献求助10
12秒前
时光发布了新的文献求助10
12秒前
yuki完成签到,获得积分10
12秒前
南逸然完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678