Reduced field-of-view DWI based on deep learning reconstruction improving diagnostic accuracy of VI-RADS for evaluating muscle invasion

医学 磁共振弥散成像 核医学 图像质量 磁共振成像 放射科 计算机科学 图像(数学) 人工智能
作者
Xinxin Zhang,Xinming Zhao,Lianyu Zhang,Xinming Zhao,Lianyu Zhang,Lianyu Zhang,Lianyu Zhang,Lianyu Zhang,Xinming Zhao,Lianyu Zhang,Xinming Zhao
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:15 (1)
标识
DOI:10.1186/s13244-024-01686-9
摘要

Abstract Objectives To investigate whether reduced field-of-view (rFOV) diffusion-weighted imaging (DWI) with deep learning reconstruction (DLR) can improve the accuracy of evaluating muscle invasion using VI-RADS. Methods Eighty-six bladder cancer participants who were evaluated by conventional full field-of-view (fFOV) DWI, standard rFOV (rFOV STA ) DWI, and fast rFOV with DLR (rFOV DLR ) DWI were included in this prospective study. Tumors were categorized according to the vesical imaging reporting and data system (VI-RADS). Qualitative image quality scoring, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and ADC value were evaluated. Friedman test with post hoc test revealed the difference across the three DWIs. Receiver operating characteristic analysis was performed to calculate the areas under the curve (AUCs). Results The AUC of the rFOV STA DWI and rFOV DLR DWI were higher than that of fFOV DWI. rFOV DLR DWI reduced the acquisition time from 5:02 min to 3:25 min, and showed higher scores in overall image quality with higher CNR and SNR, compared to rFOV STA DWI ( p < 0.05). The mean ADC of all cases of rFOV STA DWI and rFOV DLR DWI was significantly lower than that of fFOV DWI (all p < 0.05). There was no difference in mean ADC value and the AUC for evaluating muscle invasion between rFOV STA DWI and rFOV DLR DWI ( p > 0.05). Conclusions rFOV DWI with DLR can improve the diagnostic accuracy of fFOV DWI for evaluating muscle invasion. Applying DLR to rFOV DWI reduced the acquisition time and improved overall image quality while maintaining ADC value and diagnostic accuracy. Critical relevance statement The diagnostic performance and image quality of full field-of-view DWI, reduced field-of-view (rFOV) DWI with and without DLR were compared. DLR would benefit the wide clinical application of rFOV DWI by reducing the acquisition time and improving the image quality. Key Points Deep learning reconstruction (DLR) can reduce scan time and improve image quality. Reduced field-of-view (rFOV) diffusion-weighted imaging (DWI) with DLR showed better diagnostic performances than full field-of-view DWI. There was no difference of diagnostic accuracy between rFOV DWI with DLR and standard rFOV DWI. Graphical Abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaohaitao完成签到,获得积分10
刚刚
果果发布了新的文献求助10
刚刚
1秒前
GG完成签到,获得积分10
1秒前
yatou5651发布了新的文献求助10
1秒前
LabRat完成签到 ,获得积分10
2秒前
2秒前
elidan发布了新的文献求助10
2秒前
王木木发布了新的文献求助10
2秒前
布吉岛呀完成签到 ,获得积分10
2秒前
2秒前
Mint发布了新的文献求助10
2秒前
科研通AI6应助失眠的灵寒采纳,获得10
3秒前
可耐的香芦完成签到,获得积分10
3秒前
3秒前
繁荣的寻芹完成签到,获得积分10
3秒前
科研通AI5应助炙热的子默采纳,获得10
4秒前
深情安青应助敏感的凝天采纳,获得10
4秒前
852应助sinlar采纳,获得10
4秒前
小二郎应助党建毓采纳,获得10
4秒前
jermaine完成签到,获得积分10
4秒前
caixia完成签到 ,获得积分10
5秒前
董又又又又完成签到,获得积分10
5秒前
可爱的函函应助活泼蜡烛采纳,获得10
5秒前
qswang关注了科研通微信公众号
6秒前
6秒前
ahuyv完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
十七发布了新的文献求助20
9秒前
朽木发布了新的文献求助10
9秒前
idemipere完成签到,获得积分10
10秒前
10秒前
HOPO发布了新的文献求助60
11秒前
11秒前
夜月残阳发布了新的文献求助10
11秒前
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5081906
求助须知:如何正确求助?哪些是违规求助? 4299471
关于积分的说明 13395537
捐赠科研通 4123225
什么是DOI,文献DOI怎么找? 2258249
邀请新用户注册赠送积分活动 1262556
关于科研通互助平台的介绍 1196541