Reduced field-of-view DWI based on deep learning reconstruction improving diagnostic accuracy of VI-RADS for evaluating muscle invasion

医学 磁共振弥散成像 核医学 图像质量 磁共振成像 放射科 人工智能 计算机科学 图像(数学)
作者
Xinxin Zhang,Xinming Zhao,Lianyu Zhang,Xinming Zhao,Lianyu Zhang,Lianyu Zhang,Lianyu Zhang,Lianyu Zhang,Xinming Zhao,Lianyu Zhang,Xinming Zhao
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:15 (1)
标识
DOI:10.1186/s13244-024-01686-9
摘要

Abstract Objectives To investigate whether reduced field-of-view (rFOV) diffusion-weighted imaging (DWI) with deep learning reconstruction (DLR) can improve the accuracy of evaluating muscle invasion using VI-RADS. Methods Eighty-six bladder cancer participants who were evaluated by conventional full field-of-view (fFOV) DWI, standard rFOV (rFOV STA ) DWI, and fast rFOV with DLR (rFOV DLR ) DWI were included in this prospective study. Tumors were categorized according to the vesical imaging reporting and data system (VI-RADS). Qualitative image quality scoring, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and ADC value were evaluated. Friedman test with post hoc test revealed the difference across the three DWIs. Receiver operating characteristic analysis was performed to calculate the areas under the curve (AUCs). Results The AUC of the rFOV STA DWI and rFOV DLR DWI were higher than that of fFOV DWI. rFOV DLR DWI reduced the acquisition time from 5:02 min to 3:25 min, and showed higher scores in overall image quality with higher CNR and SNR, compared to rFOV STA DWI ( p < 0.05). The mean ADC of all cases of rFOV STA DWI and rFOV DLR DWI was significantly lower than that of fFOV DWI (all p < 0.05). There was no difference in mean ADC value and the AUC for evaluating muscle invasion between rFOV STA DWI and rFOV DLR DWI ( p > 0.05). Conclusions rFOV DWI with DLR can improve the diagnostic accuracy of fFOV DWI for evaluating muscle invasion. Applying DLR to rFOV DWI reduced the acquisition time and improved overall image quality while maintaining ADC value and diagnostic accuracy. Critical relevance statement The diagnostic performance and image quality of full field-of-view DWI, reduced field-of-view (rFOV) DWI with and without DLR were compared. DLR would benefit the wide clinical application of rFOV DWI by reducing the acquisition time and improving the image quality. Key Points Deep learning reconstruction (DLR) can reduce scan time and improve image quality. Reduced field-of-view (rFOV) diffusion-weighted imaging (DWI) with DLR showed better diagnostic performances than full field-of-view DWI. There was no difference of diagnostic accuracy between rFOV DWI with DLR and standard rFOV DWI. Graphical Abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助科研通管家采纳,获得10
刚刚
今后应助科研通管家采纳,获得10
刚刚
桐桐应助科研通管家采纳,获得10
刚刚
Lucas应助55采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
天真之桃完成签到,获得积分10
3秒前
4秒前
4秒前
所所应助阿巴阿巴小聂采纳,获得10
4秒前
沧笙踏歌应助小奥采纳,获得10
4秒前
xiaxia完成签到 ,获得积分10
7秒前
7秒前
7秒前
7秒前
9秒前
cckyt完成签到,获得积分10
11秒前
11秒前
12秒前
CipherSage应助想人陪的山水采纳,获得10
12秒前
zzy完成签到 ,获得积分10
12秒前
13秒前
14秒前
15秒前
16秒前
旺仔牛奶糖完成签到,获得积分10
17秒前
大Doctor陈发布了新的文献求助10
17秒前
开开开发布了新的文献求助20
17秒前
18秒前
18秒前
Newt应助wshwx采纳,获得10
19秒前
19秒前
魏来发布了新的文献求助30
19秒前
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959309
求助须知:如何正确求助?哪些是违规求助? 3505589
关于积分的说明 11124738
捐赠科研通 3237345
什么是DOI,文献DOI怎么找? 1789116
邀请新用户注册赠送积分活动 871544
科研通“疑难数据库(出版商)”最低求助积分说明 802844