Reduced field-of-view DWI based on deep learning reconstruction improving diagnostic accuracy of VI-RADS for evaluating muscle invasion

医学 磁共振弥散成像 核医学 图像质量 磁共振成像 放射科 人工智能 计算机科学 图像(数学)
作者
Xinxin Zhang,Xinming Zhao,Lianyu Zhang,Xinming Zhao,Lianyu Zhang,Lianyu Zhang,Lianyu Zhang,Lianyu Zhang,Xinming Zhao,Lianyu Zhang,Xinming Zhao
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:15 (1)
标识
DOI:10.1186/s13244-024-01686-9
摘要

Abstract Objectives To investigate whether reduced field-of-view (rFOV) diffusion-weighted imaging (DWI) with deep learning reconstruction (DLR) can improve the accuracy of evaluating muscle invasion using VI-RADS. Methods Eighty-six bladder cancer participants who were evaluated by conventional full field-of-view (fFOV) DWI, standard rFOV (rFOV STA ) DWI, and fast rFOV with DLR (rFOV DLR ) DWI were included in this prospective study. Tumors were categorized according to the vesical imaging reporting and data system (VI-RADS). Qualitative image quality scoring, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and ADC value were evaluated. Friedman test with post hoc test revealed the difference across the three DWIs. Receiver operating characteristic analysis was performed to calculate the areas under the curve (AUCs). Results The AUC of the rFOV STA DWI and rFOV DLR DWI were higher than that of fFOV DWI. rFOV DLR DWI reduced the acquisition time from 5:02 min to 3:25 min, and showed higher scores in overall image quality with higher CNR and SNR, compared to rFOV STA DWI ( p < 0.05). The mean ADC of all cases of rFOV STA DWI and rFOV DLR DWI was significantly lower than that of fFOV DWI (all p < 0.05). There was no difference in mean ADC value and the AUC for evaluating muscle invasion between rFOV STA DWI and rFOV DLR DWI ( p > 0.05). Conclusions rFOV DWI with DLR can improve the diagnostic accuracy of fFOV DWI for evaluating muscle invasion. Applying DLR to rFOV DWI reduced the acquisition time and improved overall image quality while maintaining ADC value and diagnostic accuracy. Critical relevance statement The diagnostic performance and image quality of full field-of-view DWI, reduced field-of-view (rFOV) DWI with and without DLR were compared. DLR would benefit the wide clinical application of rFOV DWI by reducing the acquisition time and improving the image quality. Key Points Deep learning reconstruction (DLR) can reduce scan time and improve image quality. Reduced field-of-view (rFOV) diffusion-weighted imaging (DWI) with DLR showed better diagnostic performances than full field-of-view DWI. There was no difference of diagnostic accuracy between rFOV DWI with DLR and standard rFOV DWI. Graphical Abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
付创完成签到,获得积分10
刚刚
564654SDA发布了新的文献求助10
1秒前
宝宝慧儿7完成签到,获得积分20
1秒前
2秒前
YANGLan发布了新的文献求助10
4秒前
6秒前
涛涛完成签到,获得积分10
6秒前
7秒前
短巷发布了新的文献求助10
7秒前
感谢大佬发布了新的文献求助20
7秒前
8秒前
9秒前
grewj6发布了新的文献求助10
9秒前
吉尼斯发布了新的文献求助10
9秒前
愉快的定帮完成签到,获得积分10
9秒前
爆米花应助WZH采纳,获得10
10秒前
11秒前
乐乐应助宣依云采纳,获得10
12秒前
13秒前
乌冬面发布了新的文献求助10
14秒前
颢懿完成签到 ,获得积分10
14秒前
15秒前
16秒前
16秒前
汉堡包应助生动的海露采纳,获得30
17秒前
木子三少完成签到,获得积分0
17秒前
18秒前
碧蓝的澜完成签到,获得积分10
19秒前
咕噜咕噜发布了新的文献求助10
20秒前
YangC完成签到,获得积分10
21秒前
21秒前
QQQ发布了新的文献求助10
22秒前
22秒前
共享精神应助栗子采纳,获得30
23秒前
23秒前
笨笨凡完成签到,获得积分10
24秒前
我说苏卡你说不列完成签到,获得积分10
25秒前
执着访文应助Fairyvivi采纳,获得20
25秒前
Lumi应助tongxiehou1采纳,获得10
26秒前
26秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149540
求助须知:如何正确求助?哪些是违规求助? 2800615
关于积分的说明 7840805
捐赠科研通 2458144
什么是DOI,文献DOI怎么找? 1308295
科研通“疑难数据库(出版商)”最低求助积分说明 628471
版权声明 601706