Deep Learning–Based Facial and Skeletal Transformations for Surgical Planning

地标 计算机科学 人工智能 面子(社会学概念) 手术计划 颅面 模式识别(心理学) 计算机视觉 医学 社会科学 精神科 放射科 社会学
作者
Jiahao Bao,X. Zhang,Shuguang Xiang,Hao Liu,Ming Cheng,Yang Yang,Xiaolin Huang,Wei Xiang,Wenpeng Cui,Hong Lai,Shuo Huang,Yan Wang,Dianwei Qian,Hong Yu
出处
期刊:Journal of Dental Research [SAGE Publishing]
被引量:3
标识
DOI:10.1177/00220345241253186
摘要

The increasing application of virtual surgical planning (VSP) in orthognathic surgery implies a critical need for accurate prediction of facial and skeletal shapes. The craniofacial relationship in patients with dentofacial deformities is still not understood, and transformations between facial and skeletal shapes remain a challenging task due to intricate anatomical structures and nonlinear relationships between the facial soft tissue and bones. In this study, a novel bidirectional 3-dimensional (3D) deep learning framework, named P2P-ConvGC, was developed and validated based on a large-scale data set for accurate subject-specific transformations between facial and skeletal shapes. Specifically, the 2-stage point-sampling strategy was used to generate multiple nonoverlapping point subsets to represent high-resolution facial and skeletal shapes. Facial and skeletal point subsets were separately input into the prediction system to predict the corresponding skeletal and facial point subsets via the skeletal prediction subnetwork and facial prediction subnetwork. For quantitative evaluation, the accuracy was calculated with shape errors and landmark errors between the predicted skeleton or face with corresponding ground truths. The shape error was calculated by comparing the predicted point sets with the ground truths, with P2P-ConvGC outperforming existing state-of-the-art algorithms including P2P-Net, P2P-ASNL, and P2P-Conv. The total landmark errors (Euclidean distances of craniomaxillofacial landmarks) of P2P-ConvGC in the upper skull, mandible, and facial soft tissues were 1.964 ± 0.904 mm, 2.398 ± 1.174 mm, and 2.226 ± 0.774 mm, respectively. Furthermore, the clinical feasibility of the bidirectional model was validated using a clinical cohort. The result demonstrated its prediction ability with average surface deviation errors of 0.895 ± 0.175 mm for facial prediction and 0.906 ± 0.082 mm for skeletal prediction. To conclude, our proposed model achieved good performance on the subject-specific prediction of facial and skeletal shapes and showed clinical application potential in postoperative facial prediction and VSP for orthognathic surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
时尚涔雨发布了新的文献求助10
刚刚
刚刚
Alex发布了新的文献求助10
刚刚
沛蓝应助李小鑫吖采纳,获得10
刚刚
梁梁完成签到,获得积分10
1秒前
1秒前
Xin发布了新的文献求助10
1秒前
zbl1314zbl发布了新的文献求助10
2秒前
doo完成签到,获得积分10
3秒前
clairr完成签到,获得积分10
4秒前
怡然谷雪发布了新的文献求助10
5秒前
6秒前
shangshang发布了新的文献求助10
6秒前
夕诙应助Chine-Wang采纳,获得20
6秒前
7秒前
wxh123完成签到,获得积分10
7秒前
7秒前
今后应助初学者采纳,获得10
7秒前
cs完成签到 ,获得积分10
8秒前
脑洞疼应助chenmingjuan采纳,获得10
8秒前
CiCi完成签到,获得积分10
9秒前
tianshicanyi发布了新的文献求助10
9秒前
斯文败类应助sup采纳,获得10
10秒前
10秒前
琼仔仔发布了新的文献求助10
10秒前
lxx发布了新的文献求助10
12秒前
12秒前
星辰大海应助科研通管家采纳,获得10
12秒前
顾矜应助科研通管家采纳,获得10
12秒前
叮当发布了新的文献求助10
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
djiwisksk66应助科研通管家采纳,获得10
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
蓝天白云发布了新的文献求助10
12秒前
SYLH应助科研通管家采纳,获得10
13秒前
华仔应助科研通管家采纳,获得10
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978596
求助须知:如何正确求助?哪些是违规求助? 3522689
关于积分的说明 11214402
捐赠科研通 3260158
什么是DOI,文献DOI怎么找? 1799770
邀请新用户注册赠送积分活动 878659
科研通“疑难数据库(出版商)”最低求助积分说明 807033