Deep Learning–Based Facial and Skeletal Transformations for Surgical Planning

地标 计算机科学 人工智能 面子(社会学概念) 手术计划 颅面 模式识别(心理学) 计算机视觉 医学 社会科学 精神科 社会学 放射科
作者
Jiahao Bao,X. Zhang,Shuguang Xiang,Hao Liu,Ming Cheng,Yang Yang,Xiaolin Huang,Wei Xiang,Wenpeng Cui,Hong Lai,Shuo Huang,Yan Wang,Dianwei Qian,Hong Yu
出处
期刊:Journal of Dental Research [SAGE]
被引量:1
标识
DOI:10.1177/00220345241253186
摘要

The increasing application of virtual surgical planning (VSP) in orthognathic surgery implies a critical need for accurate prediction of facial and skeletal shapes. The craniofacial relationship in patients with dentofacial deformities is still not understood, and transformations between facial and skeletal shapes remain a challenging task due to intricate anatomical structures and nonlinear relationships between the facial soft tissue and bones. In this study, a novel bidirectional 3-dimensional (3D) deep learning framework, named P2P-ConvGC, was developed and validated based on a large-scale data set for accurate subject-specific transformations between facial and skeletal shapes. Specifically, the 2-stage point-sampling strategy was used to generate multiple nonoverlapping point subsets to represent high-resolution facial and skeletal shapes. Facial and skeletal point subsets were separately input into the prediction system to predict the corresponding skeletal and facial point subsets via the skeletal prediction subnetwork and facial prediction subnetwork. For quantitative evaluation, the accuracy was calculated with shape errors and landmark errors between the predicted skeleton or face with corresponding ground truths. The shape error was calculated by comparing the predicted point sets with the ground truths, with P2P-ConvGC outperforming existing state-of-the-art algorithms including P2P-Net, P2P-ASNL, and P2P-Conv. The total landmark errors (Euclidean distances of craniomaxillofacial landmarks) of P2P-ConvGC in the upper skull, mandible, and facial soft tissues were 1.964 ± 0.904 mm, 2.398 ± 1.174 mm, and 2.226 ± 0.774 mm, respectively. Furthermore, the clinical feasibility of the bidirectional model was validated using a clinical cohort. The result demonstrated its prediction ability with average surface deviation errors of 0.895 ± 0.175 mm for facial prediction and 0.906 ± 0.082 mm for skeletal prediction. To conclude, our proposed model achieved good performance on the subject-specific prediction of facial and skeletal shapes and showed clinical application potential in postoperative facial prediction and VSP for orthognathic surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sususu完成签到,获得积分10
刚刚
Elaine完成签到,获得积分10
刚刚
1秒前
美海与鱼完成签到,获得积分10
1秒前
1秒前
云殳完成签到,获得积分20
2秒前
BWZ发布了新的文献求助10
2秒前
3秒前
anan发布了新的文献求助10
3秒前
司徒元瑶完成签到 ,获得积分10
4秒前
JamesPei应助hezi采纳,获得10
4秒前
早早入眠完成签到,获得积分10
5秒前
5秒前
东丶完成签到,获得积分10
5秒前
NWAFUZH发布了新的文献求助10
5秒前
孟加拉发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
7秒前
达西西完成签到 ,获得积分10
7秒前
8秒前
楠沅完成签到,获得积分20
9秒前
RUI完成签到,获得积分10
9秒前
juzipi发布了新的文献求助10
11秒前
Gary完成签到,获得积分10
11秒前
Agamemnon发布了新的文献求助10
11秒前
陶紫琴kkk完成签到,获得积分10
12秒前
Zzzzz完成签到,获得积分10
12秒前
12秒前
九鹤完成签到 ,获得积分10
12秒前
科目三应助dd采纳,获得10
13秒前
研友_Ze2k48发布了新的文献求助10
13秒前
ning完成签到,获得积分10
13秒前
百里丹珍完成签到,获得积分20
14秒前
14秒前
BWZ完成签到,获得积分10
14秒前
fgjvythjd完成签到 ,获得积分10
14秒前
顽固分子发布了新的文献求助10
15秒前
大模型应助ckl采纳,获得10
16秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244993
求助须知:如何正确求助?哪些是违规求助? 2888654
关于积分的说明 8254529
捐赠科研通 2557066
什么是DOI,文献DOI怎么找? 1385741
科研通“疑难数据库(出版商)”最低求助积分说明 650214
邀请新用户注册赠送积分活动 626422