已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A new machine learning model to predict the prognosis of cardiogenic brain infarction

计算机科学 心源性休克 心肌梗塞 脑梗塞 梗塞 人工智能 医学 内科学 心脏病学 机器学习 缺血
作者
Xuezhi Yang,Weiwei Quan,Jun-lei Zhou,Ou Zhang,Xiao‐Dong Wang,Chun‐Feng Liu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:178: 108600-108600
标识
DOI:10.1016/j.compbiomed.2024.108600
摘要

Cardiogenic cerebral infarction (CCI) is a disease in which the blood supply to the blood vessels in the brain is insufficient due to atherosclerosis or stenosis of the coronary arteries in the patient's heart, which leads to neurological deficits. To predict the pathogenic factors of cardiogenic cerebral infarction, this paper proposes a machine learning based analytical prediction model. 494 patients with CCI who were hospitalized for the first time were consecutively included in the study between January 2017 and December 2021, and followed up every three months for one year after hospital discharge. Clinical, laboratory and imaging data were collected, and predictors associated with relapse and death in CCI patients at six months and one year after discharge were analyzed using univariate and multivariate logistic regression methods, meanwhile established a new machine learning model based on the enhanced moth-flame optimization (FTSAMFO) and the fuzzy K-nearest neighbor (FKNN), called BITSAMFO-FKNN, which is practiced on the dataset related to patients with CCI. It is based on the improved moth-flame optimization (FTSAMFO) and the fuzzy K-nearest neighbor (FKNN). Specifically, this paper proposes the spatial transformation strategy to increase the development capability of moth-flame optimization (MFO) and combines it with the tree seed algorithm (TSA) to increase the search capability of MFO. In the benchmark function experiments FTSAMFO beat 5 classical algorithms and 5 recent variants. In the feature selection experiment, ten times ten-fold cross-validation trials showed that the BITSAMFO-FKNN model proved actual medical importance and efficacy, with an accuracy value of 96.61%, sensitivity value of 0.8947, MCC value of 0.9231, and F-Measure of 0.9444. The results of the trial showed that hemorrhagic conversion and lower LVDD/LVSD were independent risk factors for recurrence and death in patients with CCI. The established BITSAMFO-FKNN method is helpful for CCI prognosis and deserves further clinical validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桥豆麻袋完成签到,获得积分10
1秒前
wpx完成签到,获得积分10
2秒前
6秒前
7秒前
烟花应助124采纳,获得10
7秒前
阿司匹林完成签到 ,获得积分10
9秒前
mzh发布了新的文献求助10
11秒前
Kw完成签到,获得积分10
12秒前
CodeCraft应助科研通管家采纳,获得10
13秒前
CodeCraft应助科研通管家采纳,获得10
13秒前
13秒前
孟佳完成签到 ,获得积分10
16秒前
SciGPT应助取什么名字呢采纳,获得10
17秒前
颢懿完成签到 ,获得积分10
18秒前
888发布了新的文献求助10
21秒前
AURORA丶完成签到 ,获得积分10
21秒前
ZH完成签到 ,获得积分10
23秒前
Hanayu完成签到 ,获得积分10
26秒前
取什么名字呢完成签到,获得积分10
27秒前
27秒前
简单的安珊完成签到,获得积分20
31秒前
太清完成签到,获得积分10
31秒前
31秒前
33秒前
Tracy.完成签到,获得积分10
34秒前
35秒前
酷炫涫发布了新的文献求助10
35秒前
lz完成签到 ,获得积分10
38秒前
Wing完成签到 ,获得积分10
43秒前
科研通AI5应助简单的安珊采纳,获得10
43秒前
副本发布了新的文献求助10
49秒前
神勇的小懒虫完成签到 ,获得积分10
49秒前
香锅不要辣完成签到 ,获得积分10
51秒前
pinklay完成签到 ,获得积分10
52秒前
平淡的翅膀完成签到 ,获得积分10
53秒前
56秒前
小透明应助cc采纳,获得30
59秒前
清秀紫南完成签到 ,获得积分10
1分钟前
1分钟前
甜甜的采蓝完成签到 ,获得积分10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Barth, Derrida and the Language of Theology 500
2024-2030年中国聚异戊二烯橡胶行业市场现状调查及发展前景研判报告 500
Facharztprüfung Kardiologie 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3595863
求助须知:如何正确求助?哪些是违规求助? 3162844
关于积分的说明 9542356
捐赠科研通 2866542
什么是DOI,文献DOI怎么找? 1575494
邀请新用户注册赠送积分活动 740235
科研通“疑难数据库(出版商)”最低求助积分说明 724047