材料科学
发光
溶剂
精氨酸
分子
纳米技术
化学工程
组合化学
光电子学
有机化学
生物化学
氨基酸
化学
工程类
作者
Hui‐Yu Wang,Lei Miao,Bolun Zhang,Ying‐Ji Sun,Jun Chen,Shu‐Qin Liu,Wen‐Qi Zhang,Ting Wang,Jianjun Zhang
标识
DOI:10.1002/adfm.202403734
摘要
Abstract Luminescence metal–organic materials (MOMs) are widely used as probes for detection. However, most of such probes are based on fluorescence and work in either turn‐off or turn‐on mode. In contrast, long‐lived (>10 ms) probes (LLPs) with recovery response to analyte are quite rare. Herein “solvation complex” strategy is used to prepare two new afterglow complexes with multiple coordinated solvents, trans ‐complex 1 with both delayed fluorescence (DF) and room temperature phosphorescence (RTP), and cis ‐complex 2 with RTP. Remarkably, they can serve as selective and recovery LLPs for l ‐Arginine detection, with limit of detection down to 1.0 × 10 −7 M. In addition, heating/fumigation can induce reversible arousal/silence of their afterglow, while H 2 O/DMSO vapor fumigation causes reversible crystalline‐to‐crystalline transformation between them. Detailed mechanism studies reveal that the change in coordinated solvent, including loss/acquisition, exchange, or replacement, plays a key role in such afterglow multi‐stimuli‐responsive properties. This work not only shows the potential of such long‐lived luminescence complex for recovery detection, but also reveals the unique advantages of solvation complex in the preparation of afterglow multi‐stimuli‐responsive materials
科研通智能强力驱动
Strongly Powered by AbleSci AI