Conformal surface intensive doping of low-valence Bi on Cu2O for highly efficient electrochemical nitrate reduction to ammonia production

氨生产 电化学 价(化学) 硝酸盐 兴奋剂 共形映射 材料科学 无机化学 还原(数学) 化学 电极 光电子学 物理化学 有机化学 数学 数学分析 几何学
作者
Thi Kim Cuong Phu,Won Tae Hong,Hyungu Han,Young In Song,Jong‐Hun Kim,Seung Hun Roh,Min Cheol Kim,Jai Hyun Koh,Byung‐Keun Oh,Jun Young Kim,Chan‐Hwa Chung,Dong Soo Lee,Jung Kyu Kim
出处
期刊:Materials Today [Elsevier]
卷期号:76: 52-63
标识
DOI:10.1016/j.mattod.2024.05.007
摘要

Electrochemical nitrate reduction reaction (NO3RR) has been regarded as a promising alternative to the Haber-Bosch process for sustainable and clean NH3 production. To develop highly active and stable electrocatalysts for NO3– to NH3 production, Cu-based materials have been considered as potential candidates owing to the excellent NO3– adsorption to easily overcome the rate determining step of nitrate to nitrite conversion in NO3RR, although the poor NH3 yield rate is still challenging. In this study, we report a hybrid electrocatalyst with Bi dopant substitutionally incorporated on cuboctahedra Cu2O platform (Bi/Cu2O) via in-situ hydrothermal method. The Bi/Cu2O shows the NH3 yield rate of 2562.56 μg h−1 mgcat-1 and Faradaic efficiency of 99.2 % at −0.8 V versus reversible hydrogen electrode in a neutral electrolyte, which is the highest performance among previously reported Cu-based electrocatalyst for NO3RR to NH3. The interfacial synergetic effect of sufficient protonation from Bi-doped overlayer and efficient NO3– adsorption from the Cu2O platform results in excellent NO3RR performance. The experimental variable investigations with in-situ attenuated total reflectance-Fourier transform infrared measurement elucidate that not only nitrate to nitrite conversion but also the protonation of *NO2 is the rate limiting step for NH3 production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
MADKAI发布了新的文献求助20
刚刚
xiaoli完成签到,获得积分10
1秒前
清浅完成签到,获得积分10
1秒前
赘婿应助深海soda采纳,获得10
1秒前
WJM完成签到,获得积分10
1秒前
小星星完成签到,获得积分10
1秒前
啵乐乐发布了新的文献求助10
1秒前
爆米花应助瘦瘦白昼采纳,获得10
1秒前
wintercyan发布了新的文献求助20
1秒前
大雁高飞出不胜寒完成签到,获得积分10
2秒前
PSCs发布了新的文献求助10
2秒前
QWJ完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
zxy完成签到,获得积分10
4秒前
sober完成签到,获得积分10
4秒前
4秒前
mmknnk完成签到,获得积分20
4秒前
cc2064完成签到 ,获得积分10
4秒前
调皮冰旋发布了新的文献求助10
5秒前
西哈哈完成签到,获得积分20
5秒前
5秒前
5秒前
5秒前
Orange应助幸福胡萝卜采纳,获得10
5秒前
SHDeathlock完成签到,获得积分10
6秒前
习习发布了新的文献求助100
7秒前
Jolene66完成签到,获得积分10
7秒前
研友_8RlQ2n发布了新的文献求助10
7秒前
8秒前
852应助Pangsj采纳,获得10
8秒前
Song完成签到 ,获得积分10
8秒前
8秒前
9秒前
大胆夜绿发布了新的文献求助10
9秒前
Dr终年完成签到,获得积分10
9秒前
katharsis完成签到,获得积分10
9秒前
Ricardo发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678