A comprehensive multi-omics study reveals potential prognostic and diagnostic biomarkers for colorectal cancer

结直肠癌 组学 诊断生物标志物 计算生物学 癌症 医学 肿瘤科 内科学 生物信息学 生物
作者
Mohita Mahajan,Subodh Dhabalia,Tirtharaj Dash,Angshuman Sarkar,Sukanta Mondal
标识
DOI:10.1101/2024.06.10.598127
摘要

ABSTRACT Background Colorectal cancer (CRC) is a complex disease with diverse genetic alterations and causes 10% of cancer-related deaths worldwide. Understanding its molecular mechanisms is essential for identifying potential biomarkers and therapeutic targets for its effective management. Method We integrated copy number alterations (CNA) and mutation data via their differentially expressed genes termed as candidate genes (CGs) computed using bioinformatics approaches. Then, using the CGs, we perform Weighted correlation network analysis (WGCNA) and utilise several hazard models such as Univariate Cox, Least Absolute Shrinkage and Selection Operator (LASSO) Cox and multivariate Cox to identify the key genes involved in CRC progression. We used different machine-learning models to demonstrate the discriminative power of selected hub genes among normal and CRC (early and late-stage) samples. Results The integration of CNA with mRNA expression identified over 3000 CGs, including CRC-specific driver genes like MYC and APC . In addition, pathway analysis revealed that the CGs are mainly enriched in endocytosis, cell cycle, wnt signalling and mTOR signalling pathways. Hazard models identified four key genes, CASP2, HCN4, LRRC69 and SRD5A1 , that were significantly associated with CRC progression and predicted the 1-year, 3-years, and 5-years survival times. WGCNA identified seven hub genes: DSCC1, ETV4, KIAA1549, NOP56, RRS1, TEAD4 and ANKRD13B , which exhibited strong predictive performance in distinguishing normal from CRC (early and late-stage) samples. Conclusions Integrating regulatory information with gene expression improved early versus latestage prediction. The identified potential prognostic and diagnostic biomarkers in this study may guide us in developing effective therapeutic strategies for CRC management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在下风爵完成签到,获得积分10
刚刚
cdercder应助clown采纳,获得10
刚刚
淡定从凝完成签到,获得积分10
刚刚
共享精神应助义气剑通采纳,获得10
1秒前
科研通AI2S应助DQ采纳,获得10
1秒前
鸢尾完成签到 ,获得积分10
1秒前
明帅完成签到,获得积分10
2秒前
Amy完成签到,获得积分10
2秒前
聪明眼睛完成签到,获得积分10
2秒前
大模型应助小熵采纳,获得10
2秒前
斯寜应助slow采纳,获得10
2秒前
爱吃巧克力的草莓应助slow采纳,获得10
2秒前
科研通AI2S应助噜啦啦采纳,获得10
2秒前
honey完成签到,获得积分10
2秒前
3秒前
GongSyi完成签到 ,获得积分10
3秒前
3秒前
yh发布了新的文献求助10
4秒前
4秒前
HZW完成签到,获得积分10
4秒前
科研通AI5应助明理的依柔采纳,获得30
4秒前
尔尔完成签到,获得积分10
4秒前
郜浩轩完成签到,获得积分10
5秒前
爱科研的小许完成签到,获得积分10
5秒前
情怀应助Yuciyy采纳,获得10
5秒前
SciGPT应助秦时明月199588采纳,获得10
6秒前
小马甲应助孙文杰采纳,获得10
6秒前
情怀应助xxxxx采纳,获得30
6秒前
6秒前
shuogesama完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
豆腐青菜雨应助amanda采纳,获得10
8秒前
wx完成签到,获得积分10
8秒前
程大海完成签到,获得积分10
8秒前
MchemG应助Yuciyy采纳,获得10
9秒前
9秒前
灵犀完成签到,获得积分10
9秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3746429
求助须知:如何正确求助?哪些是违规求助? 3289289
关于积分的说明 10063824
捐赠科研通 3005693
什么是DOI,文献DOI怎么找? 1650347
邀请新用户注册赠送积分活动 785833
科研通“疑难数据库(出版商)”最低求助积分说明 751282