Intensity and Scale Adjustable Edge-Preserving Smoothing Filter

纹理过滤 平滑的 GSM演进的增强数据速率 计算机科学 比例(比率) 边缘保持平滑 噪音(视频) 滤波器(信号处理) 缩放空间 图像处理 图像纹理 图像(数学) 人工智能 计算机视觉 双边滤波器 物理 像素 量子力学
作者
Kazu Mishiba
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 89183-89190
标识
DOI:10.1109/access.2024.3421578
摘要

Edge-preserving smoothing is crucial in image processing for removing noise and fine textures while maintaining significant structures. This paper focuses on filter-based methods due to their computational efficiency and ease of implementation. Edges contain essential information defining object boundaries and texture details, characterized by both intensity and scale. Traditional filters, such as the bilateral, domain transform, and guided filters, primarily rely on edge intensity without the ability to adjust scale. This limitation prevents them from effectively smoothing small-scale textures while preserving significant structures. To address this limitation, we propose an edge-preserving smoothing filter that enables real-time control of both edge intensity and scale. Our method introduces a novel metric based on the variance of pixel values within patches to quantitatively assess regional flatness at a specific scale. The fundamental idea is to smooth patches at a specific scale to remove smaller-scale details while preserving larger-scale structures. Each pixel is assigned a weighted average of the smoothed results from multiple overlapping patches, with the weights determined by the inverse of the patch variances. This approach allows adaptive filtering that effectively smooths textures while preserving significant edges. Experimental comparisons with conventional methods demonstrate that our proposed filter efficiently removes textures and noise while preserving significant edges. By providing immediate visual feedback, our method allows rapid adjustments of both scale and intensity, making it suitable for real-time applications. Future work will focus on adaptive scale control to develop a texture suppression filter adaptable to diverse image structures and textures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oxygen253完成签到,获得积分10
刚刚
2秒前
橙子爱吃火龙果完成签到 ,获得积分10
2秒前
西西完成签到 ,获得积分10
5秒前
mz11完成签到,获得积分10
5秒前
6秒前
6秒前
Tycoon发布了新的文献求助10
8秒前
李天王完成签到,获得积分10
8秒前
tanrui发布了新的文献求助10
9秒前
9秒前
大西瓜发布了新的文献求助10
10秒前
领导范儿应助现代雪柳采纳,获得10
12秒前
Akim应助Tycoon采纳,获得10
14秒前
Iceshadows发布了新的文献求助10
14秒前
sci大佬完成签到,获得积分10
15秒前
16秒前
闲鱼电脑完成签到,获得积分10
18秒前
18秒前
20秒前
20秒前
24秒前
osteoclast发布了新的文献求助10
25秒前
现代雪柳发布了新的文献求助10
25秒前
纾缓完成签到 ,获得积分10
26秒前
彭于晏应助Eaven采纳,获得10
26秒前
binz完成签到,获得积分10
27秒前
正常发布了新的文献求助10
27秒前
Miranda发布了新的文献求助10
27秒前
陈彦早发布了新的文献求助10
27秒前
28秒前
mz11关注了科研通微信公众号
31秒前
大西瓜完成签到,获得积分10
32秒前
zkb完成签到,获得积分10
33秒前
33秒前
dew应助春风吹叁旬采纳,获得10
34秒前
橘涂完成签到 ,获得积分10
35秒前
freya发布了新的文献求助10
36秒前
慕青应助sht采纳,获得10
37秒前
lingzhi完成签到 ,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300590
求助须知:如何正确求助?哪些是违规求助? 4448410
关于积分的说明 13845816
捐赠科研通 4334134
什么是DOI,文献DOI怎么找? 2379350
邀请新用户注册赠送积分活动 1374494
关于科研通互助平台的介绍 1340160