Intensity and Scale Adjustable Edge-Preserving Smoothing Filter

纹理过滤 平滑的 GSM演进的增强数据速率 计算机科学 比例(比率) 边缘保持平滑 噪音(视频) 滤波器(信号处理) 缩放空间 图像处理 图像纹理 图像(数学) 人工智能 计算机视觉 双边滤波器 物理 像素 量子力学
作者
Kazu Mishiba
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 89183-89190
标识
DOI:10.1109/access.2024.3421578
摘要

Edge-preserving smoothing is crucial in image processing for removing noise and fine textures while maintaining significant structures. This paper focuses on filter-based methods due to their computational efficiency and ease of implementation. Edges contain essential information defining object boundaries and texture details, characterized by both intensity and scale. Traditional filters, such as the bilateral, domain transform, and guided filters, primarily rely on edge intensity without the ability to adjust scale. This limitation prevents them from effectively smoothing small-scale textures while preserving significant structures. To address this limitation, we propose an edge-preserving smoothing filter that enables real-time control of both edge intensity and scale. Our method introduces a novel metric based on the variance of pixel values within patches to quantitatively assess regional flatness at a specific scale. The fundamental idea is to smooth patches at a specific scale to remove smaller-scale details while preserving larger-scale structures. Each pixel is assigned a weighted average of the smoothed results from multiple overlapping patches, with the weights determined by the inverse of the patch variances. This approach allows adaptive filtering that effectively smooths textures while preserving significant edges. Experimental comparisons with conventional methods demonstrate that our proposed filter efficiently removes textures and noise while preserving significant edges. By providing immediate visual feedback, our method allows rapid adjustments of both scale and intensity, making it suitable for real-time applications. Future work will focus on adaptive scale control to develop a texture suppression filter adaptable to diverse image structures and textures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
秋秋发布了新的文献求助10
刚刚
YAN发布了新的文献求助10
刚刚
yyj完成签到,获得积分20
刚刚
1秒前
夕夜完成签到,获得积分10
1秒前
科研通AI6应助shining采纳,获得10
2秒前
咸奶兔丝完成签到,获得积分10
2秒前
HJJHJH发布了新的文献求助10
2秒前
2秒前
啦啦应助彩虹小马采纳,获得10
3秒前
852应助coolplex采纳,获得10
3秒前
李健应助LeeFY采纳,获得10
3秒前
希望天下0贩的0应助hhh采纳,获得10
3秒前
yang完成签到 ,获得积分10
3秒前
斯文败类应助諵来北往采纳,获得10
4秒前
桐桐应助celine采纳,获得10
4秒前
盲点完成签到,获得积分10
4秒前
5秒前
欢喜的火龙果完成签到,获得积分10
5秒前
MX120251336发布了新的文献求助10
5秒前
玩命的语蝶完成签到,获得积分10
6秒前
完美世界应助Yoo.采纳,获得10
6秒前
6秒前
NexusExplorer应助FlipFlops采纳,获得10
7秒前
负责蜜蜂发布了新的文献求助10
7秒前
HOAN应助踏雾采纳,获得50
7秒前
7秒前
hahahah发布了新的文献求助20
8秒前
8秒前
我很忙完成签到 ,获得积分10
8秒前
8秒前
FashionBoy应助山鸡采纳,获得10
9秒前
ww发布了新的文献求助10
9秒前
胡涂涂发布了新的文献求助10
9秒前
sunyanghu369发布了新的文献求助10
10秒前
10秒前
11秒前
彩虹小马完成签到,获得积分10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667262
求助须知:如何正确求助?哪些是违规求助? 4884975
关于积分的说明 15119469
捐赠科研通 4826112
什么是DOI,文献DOI怎么找? 2583765
邀请新用户注册赠送积分活动 1537901
关于科研通互助平台的介绍 1496041