Intensity and Scale Adjustable Edge-Preserving Smoothing Filter

纹理过滤 平滑的 GSM演进的增强数据速率 计算机科学 比例(比率) 边缘保持平滑 噪音(视频) 滤波器(信号处理) 缩放空间 图像处理 图像纹理 图像(数学) 人工智能 计算机视觉 双边滤波器 物理 像素 量子力学
作者
Kazu Mishiba
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 89183-89190
标识
DOI:10.1109/access.2024.3421578
摘要

Edge-preserving smoothing is crucial in image processing for removing noise and fine textures while maintaining significant structures. This paper focuses on filter-based methods due to their computational efficiency and ease of implementation. Edges contain essential information defining object boundaries and texture details, characterized by both intensity and scale. Traditional filters, such as the bilateral, domain transform, and guided filters, primarily rely on edge intensity without the ability to adjust scale. This limitation prevents them from effectively smoothing small-scale textures while preserving significant structures. To address this limitation, we propose an edge-preserving smoothing filter that enables real-time control of both edge intensity and scale. Our method introduces a novel metric based on the variance of pixel values within patches to quantitatively assess regional flatness at a specific scale. The fundamental idea is to smooth patches at a specific scale to remove smaller-scale details while preserving larger-scale structures. Each pixel is assigned a weighted average of the smoothed results from multiple overlapping patches, with the weights determined by the inverse of the patch variances. This approach allows adaptive filtering that effectively smooths textures while preserving significant edges. Experimental comparisons with conventional methods demonstrate that our proposed filter efficiently removes textures and noise while preserving significant edges. By providing immediate visual feedback, our method allows rapid adjustments of both scale and intensity, making it suitable for real-time applications. Future work will focus on adaptive scale control to develop a texture suppression filter adaptable to diverse image structures and textures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
卫三发布了新的文献求助10
1秒前
HCL完成签到,获得积分10
1秒前
大个应助舒心的雪莲采纳,获得10
1秒前
1秒前
cubicT完成签到,获得积分10
1秒前
1秒前
团团团子发布了新的文献求助10
2秒前
李爱国应助叶95采纳,获得10
3秒前
3秒前
何安发布了新的文献求助10
3秒前
miao发布了新的文献求助10
3秒前
3秒前
4秒前
顾矜应助咯咯哒1采纳,获得10
4秒前
TT发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
荔枝味果冻完成签到,获得积分10
6秒前
Honahlee发布了新的文献求助10
6秒前
Criminology34应助Damon采纳,获得10
7秒前
烟花应助杨一乐采纳,获得10
7秒前
7秒前
Kuhaku发布了新的文献求助20
7秒前
凯云发布了新的文献求助10
7秒前
乐乐应助柔弱亦寒采纳,获得10
7秒前
wushuwen发布了新的文献求助10
8秒前
Orange应助SIQI采纳,获得10
8秒前
JamesPei应助包容秋珊采纳,获得10
8秒前
Akim应助望居于夜空采纳,获得10
9秒前
9秒前
万能图书馆应助walu采纳,获得10
9秒前
轻松博超完成签到,获得积分10
11秒前
Wen完成签到,获得积分10
12秒前
小炒完成签到,获得积分20
12秒前
英姑应助remake441采纳,获得10
12秒前
无聊的天空完成签到,获得积分10
12秒前
傲娇菠萝完成签到,获得积分10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608436
求助须知:如何正确求助?哪些是违规求助? 4693073
关于积分的说明 14876620
捐赠科研通 4717595
什么是DOI,文献DOI怎么找? 2544222
邀请新用户注册赠送积分活动 1509305
关于科研通互助平台的介绍 1472836