Intensity and Scale Adjustable Edge-Preserving Smoothing Filter

纹理过滤 平滑的 GSM演进的增强数据速率 计算机科学 比例(比率) 边缘保持平滑 噪音(视频) 滤波器(信号处理) 缩放空间 图像处理 图像纹理 图像(数学) 人工智能 计算机视觉 双边滤波器 物理 像素 量子力学
作者
Kazu Mishiba
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 89183-89190
标识
DOI:10.1109/access.2024.3421578
摘要

Edge-preserving smoothing is crucial in image processing for removing noise and fine textures while maintaining significant structures. This paper focuses on filter-based methods due to their computational efficiency and ease of implementation. Edges contain essential information defining object boundaries and texture details, characterized by both intensity and scale. Traditional filters, such as the bilateral, domain transform, and guided filters, primarily rely on edge intensity without the ability to adjust scale. This limitation prevents them from effectively smoothing small-scale textures while preserving significant structures. To address this limitation, we propose an edge-preserving smoothing filter that enables real-time control of both edge intensity and scale. Our method introduces a novel metric based on the variance of pixel values within patches to quantitatively assess regional flatness at a specific scale. The fundamental idea is to smooth patches at a specific scale to remove smaller-scale details while preserving larger-scale structures. Each pixel is assigned a weighted average of the smoothed results from multiple overlapping patches, with the weights determined by the inverse of the patch variances. This approach allows adaptive filtering that effectively smooths textures while preserving significant edges. Experimental comparisons with conventional methods demonstrate that our proposed filter efficiently removes textures and noise while preserving significant edges. By providing immediate visual feedback, our method allows rapid adjustments of both scale and intensity, making it suitable for real-time applications. Future work will focus on adaptive scale control to develop a texture suppression filter adaptable to diverse image structures and textures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
单身的溪流完成签到 ,获得积分10
1秒前
大李包发布了新的文献求助10
1秒前
苗松完成签到,获得积分10
2秒前
FashionBoy应助流北爷采纳,获得10
2秒前
乐乐应助奋斗的小林采纳,获得10
2秒前
sankumao完成签到,获得积分10
2秒前
京阿尼发布了新的文献求助10
2秒前
xia发布了新的文献求助10
3秒前
SCI发布了新的文献求助10
4秒前
4秒前
zhui发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
马静雨完成签到,获得积分20
5秒前
6秒前
6秒前
快乐小白菜应助shenzhou9采纳,获得10
6秒前
无花果应助aertom采纳,获得10
6秒前
小田发布了新的文献求助10
6秒前
sankumao发布了新的文献求助30
6秒前
奋斗的盼柳完成签到 ,获得积分10
7秒前
8秒前
Jasper应助handsomecat采纳,获得10
8秒前
8秒前
李雪完成签到,获得积分10
9秒前
9秒前
sv发布了新的文献求助10
11秒前
小田完成签到,获得积分10
11秒前
茶茶完成签到,获得积分20
11秒前
苏兴龙完成签到,获得积分10
11秒前
坚强的亦云-333完成签到,获得积分10
11秒前
Ava应助dan1029采纳,获得10
12秒前
12秒前
12秒前
奶糖最可爱完成签到,获得积分10
13秒前
13秒前
mojomars发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794