Intensity and Scale Adjustable Edge-Preserving Smoothing Filter

纹理过滤 平滑的 GSM演进的增强数据速率 计算机科学 比例(比率) 边缘保持平滑 噪音(视频) 滤波器(信号处理) 缩放空间 图像处理 图像纹理 图像(数学) 人工智能 计算机视觉 双边滤波器 物理 像素 量子力学
作者
Kazu Mishiba
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 89183-89190
标识
DOI:10.1109/access.2024.3421578
摘要

Edge-preserving smoothing is crucial in image processing for removing noise and fine textures while maintaining significant structures. This paper focuses on filter-based methods due to their computational efficiency and ease of implementation. Edges contain essential information defining object boundaries and texture details, characterized by both intensity and scale. Traditional filters, such as the bilateral, domain transform, and guided filters, primarily rely on edge intensity without the ability to adjust scale. This limitation prevents them from effectively smoothing small-scale textures while preserving significant structures. To address this limitation, we propose an edge-preserving smoothing filter that enables real-time control of both edge intensity and scale. Our method introduces a novel metric based on the variance of pixel values within patches to quantitatively assess regional flatness at a specific scale. The fundamental idea is to smooth patches at a specific scale to remove smaller-scale details while preserving larger-scale structures. Each pixel is assigned a weighted average of the smoothed results from multiple overlapping patches, with the weights determined by the inverse of the patch variances. This approach allows adaptive filtering that effectively smooths textures while preserving significant edges. Experimental comparisons with conventional methods demonstrate that our proposed filter efficiently removes textures and noise while preserving significant edges. By providing immediate visual feedback, our method allows rapid adjustments of both scale and intensity, making it suitable for real-time applications. Future work will focus on adaptive scale control to develop a texture suppression filter adaptable to diverse image structures and textures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
miemie66完成签到,获得积分10
刚刚
我只是个丙酮酸完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
zhang应助颖颖采纳,获得30
刚刚
1秒前
科研三井泽完成签到,获得积分10
1秒前
甜蜜水蜜桃完成签到 ,获得积分10
1秒前
洛阳官人完成签到,获得积分10
2秒前
体贴的小天鹅完成签到,获得积分10
2秒前
美丽的依琴完成签到,获得积分10
3秒前
gc发布了新的文献求助10
3秒前
wd完成签到,获得积分10
3秒前
4秒前
4秒前
冯昌康完成签到,获得积分20
5秒前
小王同学完成签到,获得积分10
5秒前
wangli完成签到,获得积分10
5秒前
强强强强完成签到,获得积分10
5秒前
Conccuc完成签到,获得积分10
6秒前
6秒前
6秒前
善学以致用应助古炮采纳,获得30
6秒前
缥缈夏山完成签到,获得积分10
7秒前
tyy完成签到,获得积分10
7秒前
努力的学发布了新的文献求助10
8秒前
欢喜若男发布了新的文献求助50
8秒前
英俊的高跟鞋完成签到,获得积分10
8秒前
Java完成签到,获得积分10
9秒前
SciGPT应助MrHua采纳,获得10
9秒前
9秒前
电机小学生完成签到,获得积分10
9秒前
舒心的幻天完成签到,获得积分10
9秒前
9秒前
桃紫完成签到,获得积分10
10秒前
安详砖家完成签到,获得积分10
11秒前
11秒前
11秒前
d_fishier完成签到 ,获得积分10
11秒前
虚拟莫茗完成签到 ,获得积分10
12秒前
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953597
求助须知:如何正确求助?哪些是违规求助? 3499217
关于积分的说明 11094578
捐赠科研通 3229785
什么是DOI,文献DOI怎么找? 1785744
邀请新用户注册赠送积分活动 869499
科研通“疑难数据库(出版商)”最低求助积分说明 801478