亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Intensity and Scale Adjustable Edge-Preserving Smoothing Filter

纹理过滤 平滑的 GSM演进的增强数据速率 计算机科学 比例(比率) 边缘保持平滑 噪音(视频) 滤波器(信号处理) 缩放空间 图像处理 图像纹理 图像(数学) 人工智能 计算机视觉 双边滤波器 物理 像素 量子力学
作者
Kazu Mishiba
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 89183-89190
标识
DOI:10.1109/access.2024.3421578
摘要

Edge-preserving smoothing is crucial in image processing for removing noise and fine textures while maintaining significant structures. This paper focuses on filter-based methods due to their computational efficiency and ease of implementation. Edges contain essential information defining object boundaries and texture details, characterized by both intensity and scale. Traditional filters, such as the bilateral, domain transform, and guided filters, primarily rely on edge intensity without the ability to adjust scale. This limitation prevents them from effectively smoothing small-scale textures while preserving significant structures. To address this limitation, we propose an edge-preserving smoothing filter that enables real-time control of both edge intensity and scale. Our method introduces a novel metric based on the variance of pixel values within patches to quantitatively assess regional flatness at a specific scale. The fundamental idea is to smooth patches at a specific scale to remove smaller-scale details while preserving larger-scale structures. Each pixel is assigned a weighted average of the smoothed results from multiple overlapping patches, with the weights determined by the inverse of the patch variances. This approach allows adaptive filtering that effectively smooths textures while preserving significant edges. Experimental comparisons with conventional methods demonstrate that our proposed filter efficiently removes textures and noise while preserving significant edges. By providing immediate visual feedback, our method allows rapid adjustments of both scale and intensity, making it suitable for real-time applications. Future work will focus on adaptive scale control to develop a texture suppression filter adaptable to diverse image structures and textures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kzwtj发布了新的文献求助10
1秒前
初始发布了新的文献求助10
1秒前
1秒前
3秒前
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
lyn123发布了新的文献求助10
7秒前
小二郎应助科研通管家采纳,获得10
8秒前
CAOHOU应助科研通管家采纳,获得10
8秒前
CAOHOU应助科研通管家采纳,获得10
8秒前
CAOHOU应助科研通管家采纳,获得10
8秒前
酷波er应助小池采纳,获得10
10秒前
西蓝花战士完成签到 ,获得积分10
19秒前
cm发布了新的文献求助20
20秒前
科研通AI6.1应助muuuu采纳,获得30
22秒前
22秒前
枝头树上的布谷鸟完成签到 ,获得积分10
23秒前
小二郎应助lyn123采纳,获得10
23秒前
kohu完成签到,获得积分10
25秒前
CodeCraft应助ZYK采纳,获得10
27秒前
ZYK完成签到,获得积分20
30秒前
32秒前
希望天下0贩的0应助SIKI采纳,获得10
35秒前
36秒前
37秒前
echo发布了新的文献求助10
38秒前
XUAN发布了新的文献求助10
42秒前
Dreamstar完成签到,获得积分10
42秒前
科研通AI6.1应助无忧采纳,获得10
43秒前
43秒前
功夫小猫发布了新的文献求助10
43秒前
无私白风发布了新的文献求助10
49秒前
功夫小猫完成签到,获得积分10
50秒前
51秒前
柳絮球发布了新的文献求助10
56秒前
57秒前
59秒前
Ava应助pay采纳,获得10
59秒前
欣怡发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754644
求助须知:如何正确求助?哪些是违规求助? 5488236
关于积分的说明 15380380
捐赠科研通 4893172
什么是DOI,文献DOI怎么找? 2631766
邀请新用户注册赠送积分活动 1579709
关于科研通互助平台的介绍 1535463