Intensity and Scale Adjustable Edge-Preserving Smoothing Filter

纹理过滤 平滑的 GSM演进的增强数据速率 计算机科学 比例(比率) 边缘保持平滑 噪音(视频) 滤波器(信号处理) 缩放空间 图像处理 图像纹理 图像(数学) 人工智能 计算机视觉 双边滤波器 物理 像素 量子力学
作者
Kazu Mishiba
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 89183-89190
标识
DOI:10.1109/access.2024.3421578
摘要

Edge-preserving smoothing is crucial in image processing for removing noise and fine textures while maintaining significant structures. This paper focuses on filter-based methods due to their computational efficiency and ease of implementation. Edges contain essential information defining object boundaries and texture details, characterized by both intensity and scale. Traditional filters, such as the bilateral, domain transform, and guided filters, primarily rely on edge intensity without the ability to adjust scale. This limitation prevents them from effectively smoothing small-scale textures while preserving significant structures. To address this limitation, we propose an edge-preserving smoothing filter that enables real-time control of both edge intensity and scale. Our method introduces a novel metric based on the variance of pixel values within patches to quantitatively assess regional flatness at a specific scale. The fundamental idea is to smooth patches at a specific scale to remove smaller-scale details while preserving larger-scale structures. Each pixel is assigned a weighted average of the smoothed results from multiple overlapping patches, with the weights determined by the inverse of the patch variances. This approach allows adaptive filtering that effectively smooths textures while preserving significant edges. Experimental comparisons with conventional methods demonstrate that our proposed filter efficiently removes textures and noise while preserving significant edges. By providing immediate visual feedback, our method allows rapid adjustments of both scale and intensity, making it suitable for real-time applications. Future work will focus on adaptive scale control to develop a texture suppression filter adaptable to diverse image structures and textures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
2秒前
超级巨佬发布了新的文献求助10
2秒前
zyy发布了新的文献求助30
4秒前
酷酷的觅荷完成签到,获得积分10
5秒前
6秒前
6秒前
datiancaihaha完成签到,获得积分10
7秒前
雪酪芋泥球完成签到 ,获得积分10
8秒前
乐观的颦完成签到,获得积分10
8秒前
陈雨行完成签到 ,获得积分10
10秒前
10秒前
JJJJJJJJJJJ发布了新的文献求助10
10秒前
小唐完成签到,获得积分10
11秒前
orixero应助lily采纳,获得10
11秒前
11秒前
陶宇发布了新的文献求助10
12秒前
12秒前
13秒前
光合谷完成签到,获得积分10
13秒前
情怀应助等待的以筠采纳,获得50
15秒前
Twonej应助datiancaihaha采纳,获得30
17秒前
17秒前
huahua发布了新的文献求助30
17秒前
量子星尘发布了新的文献求助30
17秒前
18秒前
小蕾发布了新的文献求助10
19秒前
20秒前
20秒前
lily发布了新的文献求助10
22秒前
hhhhhhhhhh完成签到 ,获得积分10
24秒前
24秒前
鲤鱼手机发布了新的文献求助50
24秒前
囚徒发布了新的文献求助10
25秒前
25秒前
KaleemUllah发布了新的文献求助10
26秒前
huahua完成签到,获得积分10
26秒前
英吉利25发布了新的文献求助30
28秒前
Jianfeng完成签到,获得积分10
28秒前
haha关注了科研通微信公众号
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734851
求助须知:如何正确求助?哪些是违规求助? 5356584
关于积分的说明 15327858
捐赠科研通 4879364
什么是DOI,文献DOI怎么找? 2621846
邀请新用户注册赠送积分活动 1571071
关于科研通互助平台的介绍 1527841