Intensity and Scale Adjustable Edge-Preserving Smoothing Filter

纹理过滤 平滑的 GSM演进的增强数据速率 计算机科学 比例(比率) 边缘保持平滑 噪音(视频) 滤波器(信号处理) 缩放空间 图像处理 图像纹理 图像(数学) 人工智能 计算机视觉 双边滤波器 物理 像素 量子力学
作者
Kazu Mishiba
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 89183-89190
标识
DOI:10.1109/access.2024.3421578
摘要

Edge-preserving smoothing is crucial in image processing for removing noise and fine textures while maintaining significant structures. This paper focuses on filter-based methods due to their computational efficiency and ease of implementation. Edges contain essential information defining object boundaries and texture details, characterized by both intensity and scale. Traditional filters, such as the bilateral, domain transform, and guided filters, primarily rely on edge intensity without the ability to adjust scale. This limitation prevents them from effectively smoothing small-scale textures while preserving significant structures. To address this limitation, we propose an edge-preserving smoothing filter that enables real-time control of both edge intensity and scale. Our method introduces a novel metric based on the variance of pixel values within patches to quantitatively assess regional flatness at a specific scale. The fundamental idea is to smooth patches at a specific scale to remove smaller-scale details while preserving larger-scale structures. Each pixel is assigned a weighted average of the smoothed results from multiple overlapping patches, with the weights determined by the inverse of the patch variances. This approach allows adaptive filtering that effectively smooths textures while preserving significant edges. Experimental comparisons with conventional methods demonstrate that our proposed filter efficiently removes textures and noise while preserving significant edges. By providing immediate visual feedback, our method allows rapid adjustments of both scale and intensity, making it suitable for real-time applications. Future work will focus on adaptive scale control to develop a texture suppression filter adaptable to diverse image structures and textures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pixiu完成签到,获得积分10
1秒前
烟雾里完成签到 ,获得积分10
1秒前
滕侑林完成签到,获得积分10
2秒前
2秒前
隐形的长颈鹿完成签到,获得积分10
2秒前
Littlerain~完成签到,获得积分10
2秒前
cgl155410完成签到,获得积分10
3秒前
louxiaohan完成签到,获得积分10
3秒前
小其完成签到,获得积分10
4秒前
神圣先知完成签到,获得积分10
4秒前
王小西完成签到,获得积分10
5秒前
11完成签到,获得积分10
5秒前
虚幻谷波完成签到,获得积分10
5秒前
深山何处钟声鸣完成签到 ,获得积分10
5秒前
zyw发布了新的文献求助10
5秒前
张津浩完成签到,获得积分10
6秒前
呜呜呜完成签到,获得积分10
6秒前
7秒前
八森木发布了新的文献求助10
7秒前
斯文败类应助Dreamer0422采纳,获得10
7秒前
凡高爱自由完成签到,获得积分10
8秒前
研友_qZ6Emn完成签到,获得积分0
8秒前
你还要猫怎样完成签到,获得积分10
8秒前
苯二氮卓完成签到,获得积分10
8秒前
蕊7关注了科研通微信公众号
9秒前
小其发布了新的文献求助10
9秒前
shenzhou9发布了新的文献求助10
9秒前
是赤赤呀完成签到,获得积分10
11秒前
11秒前
Jenny完成签到,获得积分10
12秒前
科研人完成签到,获得积分20
13秒前
IBMffff应助英勇羿采纳,获得100
13秒前
13秒前
ShowMaker应助体贴数据线采纳,获得50
13秒前
牛牛完成签到,获得积分10
13秒前
文华完成签到,获得积分10
13秒前
CYL07完成签到 ,获得积分10
14秒前
稍等一下完成签到 ,获得积分10
14秒前
科研通AI2S应助黄奥龙采纳,获得10
14秒前
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147001
求助须知:如何正确求助?哪些是违规求助? 2798279
关于积分的说明 7827502
捐赠科研通 2454919
什么是DOI,文献DOI怎么找? 1306492
科研通“疑难数据库(出版商)”最低求助积分说明 627808
版权声明 601565