Types of application of artificial intelligence in the diagnosis and prognosis of osteoporosis; a narrative review

骨质疏松症 叙述的 叙述性评论 医学 人工智能 计算机科学 重症监护医学 内科学 哲学 语言学
作者
Sara Moslehi,Zahra Sadat Mahmoodian,Sasan Zandi Esfahan
出处
期刊:Journal of Parathyroid Disease 卷期号:12: e11245-e11245
标识
DOI:10.34172/jpd.2024.11245
摘要

Introduction: The rising impact of osteoporosis and fragility fractures highlights the need for advanced management strategies. Integrating digital health interventions, especially artificial intelligence (AI) algorithms, is essential. Osteoporosis, a major contributor to elderly disability, demands AI to minimize diagnostic errors. This review targets stakeholders interested in employing AI for osteoporosis management. Methods: We examined 16 articles from PubMed, Google Scholar, and Medline (January 1, 2015, to January 1, 2023) using keywords like AI, osteoporosis, fragility fracture, and machine learning. After excluding redundancies, 15 articles were selected, covering five key aspects of osteoporosis management: Bone mineral densitometry (BMD) predictive variables (n=1), diagnosis, screening, and classification of osteoporosis (n=5), diagnosis and screening of fractures (n=4), fracture risk forecast (n=2), and automated image segmentation (n=3). Results: Recent machine learning (ML) advances empower AI in assessing bone health beyond X-rays. Techniques, including AI-driven analysis with multi-detector computed tomography scans, extend beyond X-ray imaging. Convolutional neural networks (CNNs) excel in fracture diagnosis, surpassing medical professionals. Enhanced CNN performance is achieved through data augmentation and generative networks. Conclusion: Initial ML applications in osteoporosis research focus on the macroscopic scale, leaving a gap in microscale exploration. Establishing a robust system for bone micro-damage initiation detection is crucial for future applications in bone micromechanics. Ongoing development is essential to assess effectiveness and affordability through controlled studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
JQKing完成签到,获得积分10
2秒前
Melon完成签到,获得积分10
2秒前
憧憬未来发布了新的文献求助10
2秒前
二水完成签到,获得积分10
2秒前
3秒前
3秒前
huanghao发布了新的文献求助10
4秒前
4秒前
5秒前
木琳森完成签到,获得积分10
5秒前
gaw2008完成签到,获得积分10
5秒前
通科研发布了新的文献求助10
6秒前
6秒前
帅葡萄发布了新的文献求助10
6秒前
6秒前
ZWK发布了新的文献求助10
7秒前
monitor发布了新的文献求助10
7秒前
7秒前
zhing完成签到 ,获得积分10
7秒前
7秒前
treasure发布了新的文献求助50
8秒前
DyLan完成签到,获得积分10
8秒前
科研通AI2S应助sci公主采纳,获得10
9秒前
ziyue应助夕荀采纳,获得10
9秒前
曹乌发布了新的文献求助30
9秒前
10秒前
10秒前
游子瑶完成签到,获得积分20
10秒前
小蘑菇应助Lyyyw采纳,获得10
11秒前
小二郎应助monitor采纳,获得10
12秒前
zzzzzz发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
14秒前
不安的斑马完成签到,获得积分10
14秒前
搜集达人应助无问采纳,获得10
14秒前
Improve完成签到,获得积分10
15秒前
ataybabdallah发布了新的文献求助10
15秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Semiconductor Process Reliability in Practice 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206140
求助须知:如何正确求助?哪些是违规求助? 2855558
关于积分的说明 8100014
捐赠科研通 2520572
什么是DOI,文献DOI怎么找? 1353532
科研通“疑难数据库(出版商)”最低求助积分说明 641780
邀请新用户注册赠送积分活动 612869