Unsupervised domain adaptation with weak source domain labels via bidirectional subdomain alignment

计算机科学 模式识别(心理学) 人工智能 质心 判别式 特征(语言学) 聚类分析 领域(数学分析) 特征学习 最大化 机器学习 数学 数学优化 哲学 语言学 数学分析
作者
Heng Zhou,Ping Zhong,Daoliang Li,Zhencai Shen
出处
期刊:Neural Networks [Elsevier]
卷期号:178: 106418-106418 被引量:1
标识
DOI:10.1016/j.neunet.2024.106418
摘要

Unsupervised domain adaptation (UDA) enables knowledge transfer from a labeled source domain to an unlabeled target domain. However, UDA performance often relies heavily on the accuracy of source domain labels, which are frequently noisy or missing in real applications. To address unreliable source labels, we propose a novel framework for extracting robust, discriminative features via iterative pseudo-labeling, queue-based clustering, and bidirectional subdomain alignment (BSA). The proposed framework begins by generating pseudo-labels for unlabeled source data and constructing codebooks via iterative clustering to obtain label-independent class centroids. Then, the proposed framework performs two main tasks: rectifying features from both domains using BSA to match subdomain distributions and enhance features; and employing a two-stage adversarial process for global feature alignment. The feature rectification is done before feature enhancement, while the global alignment is done after feature enhancement. To optimize our framework, we formulate BSA and adversarial learning as maximizing a log-likelihood function, which is implemented via the Expectation-Maximization algorithm. The proposed framework shows significant improvements compared to state-of-the-art methods on Office-31, Office-Home, and VisDA-2017 datasets, achieving average accuracies of 91.5%, 76.6%, and 87.4%, respectively. Compared to existing methods, the proposed method shows consistent superiority in unsupervised domain adaptation tasks with both fully and weakly labeled source domains.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助民谣采纳,获得10
刚刚
刚刚
玄风发布了新的文献求助10
刚刚
乐乐应助Ira1005采纳,获得10
刚刚
直率的鹭洋完成签到,获得积分10
刚刚
zy完成签到,获得积分10
1秒前
1秒前
共享精神应助科研小白采纳,获得10
1秒前
杪春完成签到 ,获得积分10
1秒前
5555发布了新的文献求助10
1秒前
2秒前
2秒前
天明完成签到,获得积分10
2秒前
三七发布了新的文献求助10
3秒前
3秒前
3秒前
wanci应助泽锦臻采纳,获得10
3秒前
茗泠发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
华仔应助血小板采纳,获得20
5秒前
123完成签到 ,获得积分10
5秒前
阿里嘎多发布了新的文献求助10
5秒前
5秒前
七田皿发布了新的文献求助10
5秒前
5秒前
xhyz发布了新的文献求助10
6秒前
7秒前
英吉利25发布了新的文献求助10
7秒前
研友_8DAv0L发布了新的文献求助10
7秒前
夜雨完成签到,获得积分10
8秒前
科目三应助Jeremy采纳,获得10
8秒前
8秒前
hyy发布了新的文献求助10
9秒前
星星海完成签到,获得积分10
9秒前
柒七完成签到,获得积分10
9秒前
科研牛马发布了新的文献求助30
10秒前
可乐发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545786
求助须知:如何正确求助?哪些是违规求助? 4631840
关于积分的说明 14622683
捐赠科研通 4573553
什么是DOI,文献DOI怎么找? 2507605
邀请新用户注册赠送积分活动 1484320
关于科研通互助平台的介绍 1455594