Resource redeployment as an entry advantage in resource‐poor settings

资源(消歧) 业务 运营管理 产业组织 计算机科学 经济 计算机网络
作者
Jasmina Chauvin,Carlos Inoue,Christopher Poliquin
出处
期刊:Strategic Management Journal [Wiley]
标识
DOI:10.1002/smj.3627
摘要

Abstract Research Summary Scarcity of productive factors poses a challenge for firms entering underdeveloped regions. We theorize that incumbent firms can overcome scarcity of skilled human capital in local labor markets by redeploying workers from existing units. We predict that redeployment is more valuable when factor markets exhibit large differences in resource scarcity. Redeployment is also more valuable when output is highly sensitive to worker skill and is responsive to complementarities between labor and other inputs. Important implications are that redeployment can endow firms with superior resources and enable them to enter more markets. Data on sugar mills in Brazil, where a sudden demand boom incentivized expansion, corroborate the predictions. Our research identifies a new mechanism of value‐creation from resource redeployment across factor markets. Managerial Summary Firms entering underdeveloped regions often struggle to obtain inputs needed for production, such as skilled labor. We propose that incumbent firms expanding into such regions can overcome resource scarcity by redeploying resources from their existing units. Redeployment allows firms to move resources—such as skilled workers—from markets where resources are relatively abundant to markets where they are scarce. We show that such factor market “arbitrage” is most valuable when firms operate across markets with large differences in resource scarcity and when production is sensitive to worker skill and to complementarities between inputs. By redeploying into markets suffering from resource scarcity, firms can enter more markets and seed units with superior resources. This gives incumbent firms with redeployment capabilities an advantage over de novo entrants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
善学以致用应助火花采纳,获得10
2秒前
3秒前
gmaster完成签到,获得积分10
3秒前
昏睡的立果完成签到,获得积分10
3秒前
Hello应助SHzheng采纳,获得10
4秒前
ZSQ发布了新的文献求助10
4秒前
科研通AI5应助刻苦的寒凝采纳,获得10
4秒前
tesla发布了新的文献求助10
5秒前
8秒前
10秒前
11秒前
12秒前
LXH关注了科研通微信公众号
13秒前
pcm完成签到 ,获得积分10
14秒前
poser完成签到,获得积分10
14秒前
星辰大海应助生动的平萱采纳,获得10
14秒前
tesla发布了新的文献求助10
15秒前
Zfancy发布了新的文献求助10
15秒前
16秒前
16秒前
科研达人发布了新的文献求助10
17秒前
18秒前
18秒前
yym完成签到,获得积分10
18秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
思源应助科研通管家采纳,获得10
19秒前
思源应助科研通管家采纳,获得10
20秒前
Orange应助科研通管家采纳,获得10
20秒前
李爱国应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
小二郎应助科研通管家采纳,获得10
20秒前
受伤书文发布了新的文献求助10
22秒前
tesla发布了新的文献求助10
23秒前
23秒前
25秒前
27秒前
pluto给火星上荟的求助进行了留言
27秒前
英俊的铭应助土豆不吃鱼采纳,获得10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Conference Record, IAS Annual Meeting 1977 610
Football, Violence and Social Identity 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3554085
求助须知:如何正确求助?哪些是违规求助? 3129855
关于积分的说明 9384472
捐赠科研通 2828994
什么是DOI,文献DOI怎么找? 1555358
邀请新用户注册赠送积分活动 725982
科研通“疑难数据库(出版商)”最低求助积分说明 715352