Inline image-based reinforcement detection for concrete additive manufacturing processes using a convolutional neural network

卷积神经网络 计算机科学 人工神经网络 强化学习 人工智能 钢筋 工程类 结构工程
作者
Lukas Lachmayer,Lars Dittrich,Robin Dörrie,Harald Kloft,Annika Raatz,Tobias Recker
出处
期刊:Proceedings of the ... ISARC
标识
DOI:10.22260/isarc2024/0007
摘要

Inline image-based reinforcement detection for concrete additive manufacturing processes using a convolutional neural network Lukas Johann Lachmayer, Lars Dittrich, Robin Dörrie, Harald Kloft, Annika Raatz, Tobias Recker Pages 42-48 (2024 Proceedings of the 41st ISARC, Lille, France, ISBN 978-0-6458322-1-1, ISSN 2413-5844) Abstract: Within the scope of additive manufacturing of structural concrete components, the integration of reinforcement provides an inevitable opportunity to enhance the load-bearing capacity of the elements. Besides the rebar integration itself, ensuring the as-planned concrete cover is key for achieving a stable and long-term legally permissible integration. The thickness of the as-built concrete cover however is unpredictably altered during printing by the varying material behaviour of the printed concrete. In addition, the lack of opportunities to anchor reinforcement elements before printing can lead to a displacement of reinforcement during printing. In this publication, we present an approach for determining the position of reinforcement elements within additively manufactured components without any post-process measurement steps. During the printing process, RGB images and depth data are recorded by a camera mounted to the printhead. Subsequently, a neural network is employed to distinguish between reinforcement structures and the deposited material within the coloured image. By overlaying the colour image data with the depth information, a 3D point cloud is generated, within which the reinforcement is marked. Keywords: Additive Manufacturing, Process Control, Image Processing, Neural Network, Printing Robot DOI: https://doi.org/10.22260/ISARC2024/0007 Download fulltext Download BibTex Download Endnote (RIS) TeX Import to Mendeley
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李静完成签到,获得积分10
刚刚
mxczsl发布了新的文献求助30
刚刚
啦啦啦完成签到,获得积分10
刚刚
科研通AI6应助yz采纳,获得10
刚刚
鱼憨儿完成签到,获得积分10
刚刚
陈富贵完成签到 ,获得积分10
2秒前
cxh发布了新的文献求助10
2秒前
Jasper应助自然小甜瓜采纳,获得10
2秒前
细腻新烟完成签到,获得积分10
2秒前
yuhanz完成签到,获得积分10
2秒前
2秒前
3秒前
zy发布了新的文献求助10
3秒前
enen发布了新的文献求助10
3秒前
3秒前
狂野问柳发布了新的文献求助10
3秒前
wanci应助禾沐采纳,获得10
4秒前
4秒前
马马发布了新的文献求助10
5秒前
霸气侧漏发布了新的文献求助10
5秒前
慎獨发布了新的文献求助10
5秒前
aafrr发布了新的文献求助10
5秒前
5秒前
冷静丸子发布了新的文献求助10
5秒前
6秒前
GreenT完成签到,获得积分10
6秒前
Lucas应助luckyyyyy采纳,获得10
6秒前
6秒前
7秒前
可爱的函函应助tdtk采纳,获得10
7秒前
7秒前
8秒前
8秒前
yuyu完成签到,获得积分10
8秒前
8秒前
Yang发布了新的文献求助10
9秒前
英俊的铭应助LIUDAN采纳,获得10
9秒前
化工渣渣发布了新的文献求助10
9秒前
深情安青应助荧123456采纳,获得10
10秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5337738
求助须知:如何正确求助?哪些是违规求助? 4474923
关于积分的说明 13926546
捐赠科研通 4369947
什么是DOI,文献DOI怎么找? 2401099
邀请新用户注册赠送积分活动 1394118
关于科研通互助平台的介绍 1366037