Inline image-based reinforcement detection for concrete additive manufacturing processes using a convolutional neural network

卷积神经网络 计算机科学 人工神经网络 强化学习 人工智能 钢筋 工程类 结构工程
作者
Lukas Lachmayer,Lars Dittrich,Robin Dörrie,Harald Kloft,Annika Raatz,Tobias Recker
出处
期刊:Proceedings of the ... ISARC
标识
DOI:10.22260/isarc2024/0007
摘要

Inline image-based reinforcement detection for concrete additive manufacturing processes using a convolutional neural network Lukas Johann Lachmayer, Lars Dittrich, Robin Dörrie, Harald Kloft, Annika Raatz, Tobias Recker Pages 42-48 (2024 Proceedings of the 41st ISARC, Lille, France, ISBN 978-0-6458322-1-1, ISSN 2413-5844) Abstract: Within the scope of additive manufacturing of structural concrete components, the integration of reinforcement provides an inevitable opportunity to enhance the load-bearing capacity of the elements. Besides the rebar integration itself, ensuring the as-planned concrete cover is key for achieving a stable and long-term legally permissible integration. The thickness of the as-built concrete cover however is unpredictably altered during printing by the varying material behaviour of the printed concrete. In addition, the lack of opportunities to anchor reinforcement elements before printing can lead to a displacement of reinforcement during printing. In this publication, we present an approach for determining the position of reinforcement elements within additively manufactured components without any post-process measurement steps. During the printing process, RGB images and depth data are recorded by a camera mounted to the printhead. Subsequently, a neural network is employed to distinguish between reinforcement structures and the deposited material within the coloured image. By overlaying the colour image data with the depth information, a 3D point cloud is generated, within which the reinforcement is marked. Keywords: Additive Manufacturing, Process Control, Image Processing, Neural Network, Printing Robot DOI: https://doi.org/10.22260/ISARC2024/0007 Download fulltext Download BibTex Download Endnote (RIS) TeX Import to Mendeley
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
852应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得20
1秒前
李健应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
科目三应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
LeiWeI发布了新的文献求助10
2秒前
2秒前
2秒前
hanchangcun发布了新的文献求助10
3秒前
靓丽初蓝发布了新的文献求助10
3秒前
yuchenmei发布了新的文献求助10
3秒前
jinzhen发布了新的文献求助10
4秒前
爱笑莞发布了新的文献求助10
4秒前
CodeCraft应助重要白开水采纳,获得10
4秒前
香蕉觅云应助精明芷巧采纳,获得10
4秒前
5秒前
5秒前
6秒前
阿尔法突触核蛋白完成签到,获得积分10
6秒前
leetaisan发布了新的文献求助30
6秒前
曾泰平发布了新的文献求助10
6秒前
solitude发布了新的文献求助10
6秒前
JUNJUN发布了新的文献求助10
7秒前
7秒前
7秒前
我是老大应助怕黑的海安采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4560243
求助须知:如何正确求助?哪些是违规求助? 3986532
关于积分的说明 12342828
捐赠科研通 3657137
什么是DOI,文献DOI怎么找? 2014731
邀请新用户注册赠送积分活动 1049596
科研通“疑难数据库(出版商)”最低求助积分说明 937803