Inline image-based reinforcement detection for concrete additive manufacturing processes using a convolutional neural network

卷积神经网络 计算机科学 人工神经网络 强化学习 人工智能 钢筋 工程类 结构工程
作者
Lukas Lachmayer,Lars Dittrich,Robin Dörrie,Harald Kloft,Annika Raatz,Tobias Recker
出处
期刊:Proceedings of the ... ISARC
标识
DOI:10.22260/isarc2024/0007
摘要

Inline image-based reinforcement detection for concrete additive manufacturing processes using a convolutional neural network Lukas Johann Lachmayer, Lars Dittrich, Robin Dörrie, Harald Kloft, Annika Raatz, Tobias Recker Pages 42-48 (2024 Proceedings of the 41st ISARC, Lille, France, ISBN 978-0-6458322-1-1, ISSN 2413-5844) Abstract: Within the scope of additive manufacturing of structural concrete components, the integration of reinforcement provides an inevitable opportunity to enhance the load-bearing capacity of the elements. Besides the rebar integration itself, ensuring the as-planned concrete cover is key for achieving a stable and long-term legally permissible integration. The thickness of the as-built concrete cover however is unpredictably altered during printing by the varying material behaviour of the printed concrete. In addition, the lack of opportunities to anchor reinforcement elements before printing can lead to a displacement of reinforcement during printing. In this publication, we present an approach for determining the position of reinforcement elements within additively manufactured components without any post-process measurement steps. During the printing process, RGB images and depth data are recorded by a camera mounted to the printhead. Subsequently, a neural network is employed to distinguish between reinforcement structures and the deposited material within the coloured image. By overlaying the colour image data with the depth information, a 3D point cloud is generated, within which the reinforcement is marked. Keywords: Additive Manufacturing, Process Control, Image Processing, Neural Network, Printing Robot DOI: https://doi.org/10.22260/ISARC2024/0007 Download fulltext Download BibTex Download Endnote (RIS) TeX Import to Mendeley

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肿瘤克星发布了新的文献求助10
1秒前
李爱国应助芘二胺采纳,获得10
2秒前
活泼的狗发布了新的文献求助20
2秒前
3秒前
小菜鸡完成签到,获得积分10
3秒前
xyh发布了新的文献求助10
3秒前
晚来天欲雪完成签到,获得积分20
4秒前
hani关注了科研通微信公众号
4秒前
镜月完成签到 ,获得积分10
4秒前
4秒前
wanci应助LX采纳,获得10
4秒前
ardejiang发布了新的文献求助10
5秒前
等风来完成签到,获得积分20
5秒前
小蘑菇应助ximo采纳,获得10
5秒前
Jessie完成签到,获得积分10
5秒前
如意2023发布了新的文献求助10
5秒前
顾矜应助矮小的凝冬采纳,获得20
5秒前
云隐完成签到,获得积分10
6秒前
7秒前
Hello应助wenlin采纳,获得10
7秒前
harvey发布了新的文献求助10
7秒前
木香完成签到,获得积分10
10秒前
哇咔咔完成签到,获得积分10
11秒前
倚楼书生完成签到,获得积分10
12秒前
linjiebro完成签到,获得积分10
12秒前
13秒前
13秒前
along完成签到,获得积分10
15秒前
哇咔咔发布了新的文献求助10
15秒前
orixero应助肿瘤克星采纳,获得10
16秒前
LX发布了新的文献求助10
17秒前
失眠的浩宇完成签到,获得积分10
18秒前
19秒前
19秒前
热情的元芹应助kento采纳,获得50
19秒前
20秒前
科研通AI2S应助浅眠采纳,获得10
20秒前
朴实香露发布了新的文献求助20
22秒前
李哥完成签到,获得积分20
22秒前
24秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233988
求助须知:如何正确求助?哪些是违规求助? 2880400
关于积分的说明 8215350
捐赠科研通 2547939
什么是DOI,文献DOI怎么找? 1377363
科研通“疑难数据库(出版商)”最低求助积分说明 647856
邀请新用户注册赠送积分活动 623248