A review of simulation and numerical modeling of electric arc furnace (EAF) and its processes

电弧炉 背景(考古学) 过程(计算) 工程类 熔渣(焊接) 过程建模 精炼(冶金) 炼钢 质量(理念) 工艺工程 机械工程 传热 计算流体力学 冶金 计算机科学 材料科学 工艺优化 航空航天工程 古生物学 哲学 热力学 物理 认识论 环境工程 生物 操作系统
作者
Mahmoud Makki Abadi,Hongyan Tang,Mohammad Mehdi Rashidi
出处
期刊:Heliyon [Elsevier]
卷期号:10 (11): e32157-e32157 被引量:3
标识
DOI:10.1016/j.heliyon.2024.e32157
摘要

Electric Arc Furnaces (EAFs) play a pivotal part in the steel industry, offering a versatile of producing high-quality steel. This paper conducts an in-depth examination of the EAF, along with exploring mathematical modeling and optimization techniques pertinent to this furnace. Additionally, it delves into the global steel production capacity employing this technology, introduces different processes associated with EAF, scrutinizes the energy balance of EAFs, and provides an overview of numerical and simulation modeling in this context. The core focus of this extensive review is the diverse landscape of EAF simulation methods. It places particular emphasis on understanding the key components and stages of the EAF process, including charging, melting, refining, tapping, and slag removal. The review delves into the wide array of approaches and methodologies employed in EAF modeling, spanning from innovative computational fluid dynamics (CFD) and finite element analysis to the intricacies of mathematical and thermodynamic models. Furthermore, the paper underscores the importance of simulation in predicting and enhancing crucial aspects such as heat transfer, chemical reactions, and fluid dynamics within the EAF. By doing so, it contributes to the optimization of energy efficacy and the ultimate quality of steel produced in these furnaces. In conclusion, this review identifies gaps in existing knowledge and offers valuable recommendations for improving mathematical process models, underscoring the continuous efforts to enhance the efficiency, sustainability, and environmental impact of steel production processes. In conclusion, several techniques aimed at enhancing both production rates and the quality of the melting process in EAF have been put forward.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
KEMUER2发布了新的文献求助10
3秒前
顺顺发布了新的文献求助10
4秒前
小熊饼干发布了新的文献求助10
4秒前
wsh发布了新的文献求助10
4秒前
代扁扁完成签到 ,获得积分10
4秒前
5秒前
lllll发布了新的文献求助10
6秒前
ChristineShao发布了新的文献求助10
6秒前
wennn发布了新的文献求助10
9秒前
susiyiyi发布了新的文献求助10
11秒前
脑洞疼应助Hawk采纳,获得10
11秒前
12秒前
13秒前
soso完成签到,获得积分20
14秒前
耍酷的香菇完成签到 ,获得积分10
16秒前
WZH完成签到,获得积分10
17秒前
lllll完成签到,获得积分10
17秒前
maox1aoxin应助小螃蟹采纳,获得30
18秒前
18秒前
19秒前
19秒前
20秒前
21秒前
Hawk发布了新的文献求助10
23秒前
23秒前
安静的板凳完成签到,获得积分10
24秒前
领导范儿应助乔心采纳,获得10
25秒前
26秒前
乐乐应助KEMUER2采纳,获得10
26秒前
小郭的华南虎完成签到,获得积分20
27秒前
more发布了新的文献求助10
27秒前
华仔应助kk采纳,获得10
29秒前
爆米花应助大猪采纳,获得10
33秒前
11发布了新的文献求助10
33秒前
科研通AI2S应助会飞的狗托采纳,获得10
33秒前
popo6150完成签到 ,获得积分10
33秒前
小二郎应助会飞的狗托采纳,获得10
33秒前
一一应助会飞的狗托采纳,获得10
34秒前
36秒前
高分求助中
The body in description of emotion: cross-linguistic studies 1000
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3212626
求助须知:如何正确求助?哪些是违规求助? 2861582
关于积分的说明 8129335
捐赠科研通 2527539
什么是DOI,文献DOI怎么找? 1361285
科研通“疑难数据库(出版商)”最低求助积分说明 643438
邀请新用户注册赠送积分活动 615776