Compressive strength of bentonite concrete using state-of-the-art optimised XGBoost models

软计算 抗压强度 粒子群优化 膨润土 计算机科学 遗传算法 超参数优化 超参数 机器学习 岩土工程 人工智能 材料科学 工程类 模糊逻辑 支持向量机 复合材料
作者
Prince Kumar,Shivani Kamal,Abhishek Kumar,Nitish Kumar,Sumit Kumar
出处
期刊:Nondestructive Testing and Evaluation [Informa]
卷期号:: 1-24 被引量:1
标识
DOI:10.1080/10589759.2024.2431634
摘要

This study proposes an advanced soft-computing approach for predicting the compressive strength (CS) of bentonite concrete using an optimised XGBoost model. Bentonite is valued as a partial cement replacement for its environmental benefits and improved concrete properties, but predicting CS remains challenging due to complex constituent interactions. The study's motivation is the increasing interest in sustainable materials like bentonite as a partial cement replacement, which presents unique challenges due to its high plasticity and swelling properties. While hybrid XGBoost models are effective in civil engineering, their application for CS prediction in concrete is limited. This research simulates hybrid XGBoost models using particle swarm optimisation (PSO), genetic algorithm (GA), and dragonfly optimisation (DO), supported by a comprehensive dataset with varied mix proportions and multicollinearity analysis. Hyperparameter tuning and feature selection techniques were applied to optimise the model's performance. The results demonstrate that the PSO-XGBoost is the best performing model (R2 = 0.974, RMSE = 0.038), followed by DO-XGBoost and GA-XGBoost. All the hybrid XGBoost models perform better than conventional XGBoost model. The developed robust soft-computing based prediction methodology can serve as a reliable alternative tool for predicting the CS of bentonite concrete, thereby facilitating the design and development of sustainable concrete mixtures with enhanced performance characteristics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观的穆发布了新的文献求助10
刚刚
Pavel完成签到,获得积分10
1秒前
2秒前
领导范儿应助徐徐采纳,获得10
3秒前
外向的凝阳完成签到 ,获得积分10
3秒前
无极微光应助丶Dawn采纳,获得20
3秒前
122发布了新的文献求助10
4秒前
wait完成签到,获得积分10
10秒前
栋栋完成签到 ,获得积分10
11秒前
新晋老板完成签到,获得积分10
12秒前
加菲丰丰给chenxi的求助进行了留言
12秒前
隐形曼青应助博博采纳,获得10
13秒前
15秒前
122完成签到,获得积分20
15秒前
Lxx完成签到,获得积分10
16秒前
16秒前
CipherSage应助逝水无痕采纳,获得10
16秒前
YifanWang应助Ttimer采纳,获得10
17秒前
FashionBoy应助fedehe采纳,获得10
18秒前
guo发布了新的文献求助10
19秒前
Zyc发布了新的文献求助10
20秒前
20秒前
21秒前
22秒前
小二郎应助依紫采纳,获得10
22秒前
量子星尘发布了新的文献求助10
22秒前
23秒前
newnew发布了新的文献求助10
25秒前
26秒前
26秒前
26秒前
28秒前
ming发布了新的文献求助10
29秒前
冰与火发布了新的文献求助10
29秒前
29秒前
SUNINE完成签到,获得积分10
30秒前
ljw199606完成签到,获得积分10
30秒前
xzy998应助加菲丰丰采纳,获得30
32秒前
尊敬的发布了新的文献求助10
32秒前
H_HP发布了新的文献求助30
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742261
求助须知:如何正确求助?哪些是违规求助? 5407364
关于积分的说明 15344547
捐赠科研通 4883713
什么是DOI,文献DOI怎么找? 2625203
邀请新用户注册赠送积分活动 1574062
关于科研通互助平台的介绍 1531044