Research on aspect-based sentiment analysis of movie reviews based on deep learning

情绪分析 计算机科学 数据科学 自然语言处理 人工智能 深度学习 情报检索
作者
Hanyue Mao,Fan Yang,Mingwen Tong
出处
期刊:Journal of Information Science [SAGE]
标识
DOI:10.1177/01655515241292353
摘要

Aspect-based sentiment analysis aims to extract the sentiment polarity of different aspects within a text. In recent years, most methods have relied on pre-trained language models such as BERT and Roberta to learn semantic representations from the context. However, in texts with ambiguous sentiment expression, the absence of domain knowledge guidance may lead pre-trained language models to miss critical information, and the attention mechanism might incorrectly focus on text that is irrelevant to the aspect categories. To address these issues, this study integrates the ontology of movie reviews to construct an aspect-based sentiment analysis model based on the ERNIE(OMR-EBA). We annotated a new Chinese data set focused on movie reviews to evaluate the model’s performance. Experimental results show that our model achieves 86% accuracy in aspectual sentiment analysis, which is better than other baseline models. The movie review domain ontology and aspect-based sentiment analysis model proposed in this study can provide valuable reference and guidance for research in the field of online movie reviews. It can also help movie production teams understand genuine user sentiments, aiding in subsequent marketing and production efforts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ganlou应助研友_宋文昊采纳,获得10
刚刚
共享精神应助skyleon采纳,获得10
2秒前
yudandan@CJLU发布了新的文献求助10
3秒前
lieribingshu完成签到 ,获得积分10
4秒前
彭于晏应助酷酷采纳,获得10
5秒前
5秒前
活着完成签到,获得积分10
5秒前
6秒前
6秒前
思源应助zxy采纳,获得30
6秒前
cs发布了新的文献求助200
6秒前
1157588380发布了新的文献求助10
7秒前
zdy完成签到 ,获得积分10
7秒前
等于发布了新的文献求助10
7秒前
7秒前
8秒前
勤恳擎宇发布了新的文献求助10
8秒前
mmmmm完成签到,获得积分10
8秒前
梦隐雾完成签到,获得积分10
8秒前
搜集达人应助volvoamg采纳,获得10
8秒前
知性的香旋完成签到,获得积分20
9秒前
杳鸢应助yannis采纳,获得30
10秒前
nuo发布了新的文献求助10
11秒前
11秒前
超级小子发布了新的文献求助10
11秒前
jimmy完成签到,获得积分10
12秒前
12秒前
12秒前
李李完成签到,获得积分10
13秒前
威武寻梅发布了新的文献求助30
14秒前
霜揽月发布了新的文献求助10
14秒前
suiyi发布了新的文献求助10
14秒前
FashionBoy应助nuo采纳,获得10
15秒前
彩色的德地完成签到,获得积分10
15秒前
mo发布了新的文献求助10
16秒前
16秒前
噗哈哈完成签到 ,获得积分10
18秒前
19秒前
20秒前
夏眠完成签到,获得积分20
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310539
求助须知:如何正确求助?哪些是违规求助? 2943392
关于积分的说明 8514589
捐赠科研通 2618688
什么是DOI,文献DOI怎么找? 1431326
科研通“疑难数据库(出版商)”最低求助积分说明 664442
邀请新用户注册赠送积分活动 649626