Deep Learning–Based Precontrast CT Parcellation for MRI-Free Brain Amyloid PET Quantification

组内相关 医学 核医学 相关性 相似性(几何) 线性回归 痴呆 正电子发射断层摄影术 Sørensen–骰子系数 分割 人工智能 病理 图像分割 数学 计算机科学 统计 临床心理学 图像(数学) 心理测量学 疾病 几何学
作者
Kyobin Choo,J. Joo,Sangwon Lee,Daesung Kim,Hyunkeong Lim,Dongwoo Kim,Seongjin Kang,Seong Jae Hwang,Mijin Yun
出处
期刊:Clinical Nuclear Medicine [Lippincott Williams & Wilkins]
标识
DOI:10.1097/rlu.0000000000005652
摘要

Purpose This study aimed to develop a deep learning (DL) model for brain region parcellation using CT data from PET/CT scans to enable accurate amyloid quantification in 18 F-FBB PET/CT without relying on high-resolution MRI. Patients and Methods A retrospective dataset of PET/CT and T1-weighted MRI pairs from 226 individuals (157 with mild cognitive impairment or dementia and 69 healthy controls) was used. The dataset was split into training/validation (60%) and test (40%) sets. Utilizing auto-generated segmentation labels, 3 UNets were independently trained for multiplanar brain parcellation on CT and subsequently ensembled. Amyloid load was measured across 46 volumes of interest (VOIs), derived from the Desikan-Killiany-Tourville atlas. Dice similarity coefficient between the proposed CT-based DL model and MRI-based (FreeSurfer) method was calculated, with SUVR comparison using linear regression analysis and intraclass correlation coefficient. Global SUVRs were also compared within groups with clinical dementia ratings (CDRs) of 0, 0.5, and 1. Results The DL-based CT parcellation achieved mean Dice similarity coefficients of 0.80 for all 46 VOIs, 0.72 for 16 cortical and limbic VOIs, and 0.83 for 30 subcortical VOIs. For regional and global SUVR comparisons, the linear regression yielded a slope, y-intercept, and R 2 of 1 ± 0.027, 0 ± 0.040, and ≧0.976, respectively ( P < 0.001), and the intraclass correlation coefficient was ≧0.988 ( P < 0.001). For global SUVRs in each CDR group, these values were 1 ± 0.020, 0 ± 0.026, ≧0.993, and ≧0.996, respectively ( P < 0.001). Both MRI-based and CT-based global SUVR showed a consistent increase as the CDR score increased. Conclusions The DL-based CT parcellation agrees strongly with MRI-based methods for amyloid PET quantification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助sunyexuan采纳,获得10
2秒前
zzz完成签到,获得积分20
2秒前
3秒前
英俊的铭应助nenoaowu采纳,获得10
4秒前
4秒前
棠梨子完成签到 ,获得积分10
5秒前
陈牛逼完成签到,获得积分10
6秒前
悦耳的襄发布了新的文献求助10
7秒前
万能图书馆应助suiyi采纳,获得10
9秒前
周凡淇发布了新的文献求助10
9秒前
12秒前
乐乐应助四小时充足睡眠采纳,获得10
12秒前
likex发布了新的文献求助30
16秒前
16秒前
16秒前
雨过天晴发布了新的文献求助10
17秒前
18秒前
甜甜发布了新的文献求助10
20秒前
20秒前
suiyi发布了新的文献求助10
21秒前
四小时充足睡眠完成签到,获得积分10
21秒前
22秒前
23秒前
小树苗完成签到,获得积分10
23秒前
我是老大应助Hi_aloha采纳,获得10
24秒前
sunyexuan发布了新的文献求助10
25秒前
25秒前
26秒前
28秒前
linp发布了新的文献求助10
29秒前
29秒前
顺心世倌完成签到,获得积分10
30秒前
刘成财发布了新的文献求助10
31秒前
Kannan发布了新的文献求助10
31秒前
甜甜完成签到,获得积分10
32秒前
34秒前
小二郎应助Dannnn采纳,获得10
35秒前
华仔应助XQQDD采纳,获得10
37秒前
Hi_aloha发布了新的文献求助10
38秒前
小马甲应助Autaro采纳,获得10
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775739
求助须知:如何正确求助?哪些是违规求助? 3321356
关于积分的说明 10205144
捐赠科研通 3036348
什么是DOI,文献DOI怎么找? 1666088
邀请新用户注册赠送积分活动 797278
科研通“疑难数据库(出版商)”最低求助积分说明 757794