Formation of Wrinkled Nanostructures via Surface–Bulk Curing Disparity in Ethyl Cyanoacrylate: Toward Superhydrophobic Surface Applications

材料科学 耐久性 复合材料 涂层 超疏水涂料 生物污染 接触角 固化(化学) 硅烷 纳米技术 磨损(机械) 纳米压痕 生物 遗传学
作者
Chang‐Woo Lee,Hyo-Jick Choi,Keuk‐Min Jeong,Kyungjun Lee,Handong Cho
出处
期刊:Nanomaterials [MDPI AG]
卷期号:15 (1): 12-12
标识
DOI:10.3390/nano15010012
摘要

Superhydrophobic surfaces, known for their exceptional water-repellent properties with contact angles exceeding 150°, are highly regarded for their effectiveness in applications including self-cleaning, antifouling, and ice prevention. However, the structural fragility and weak durability of conventional coating limit their long-term use. In this research, a new approach is proposed for the fabrication of long-lasting superhydrophobic surfaces using ethyl cyanoacrylate (ECA) and a primer. The application of the primer creates a curing rate disparity between the surface and bulk of the ECA layer, resulting in the formation of wrinkled microstructures essential for achieving superhydrophobicity. The fabricated surfaces were further functionalized through plasma treatment and hydrophobic silane (OTS) coating, enhancing their water-repellent properties. This straightforward and scalable method produced surfaces with excellent superhydrophobicity and robust adhesion to substrates. Durability tests, including roller abrasion and microscratch evaluations, indicated that the wrinkled structure and strong substrate adhesion contributed to sustained performance even under mechanical stress. Additionally, mechanical properties were assessed through nanoindentation, demonstrating enhanced resistance to physical damage compared to conventional superhydrophobic coatings. This study highlights the potential of ECA-based superhydrophobic surfaces for applications requiring durability and mechanical stability, such as architectural coatings, automotive exteriors, and medical devices. The approach offers a promising solution to the limitations of existing superhydrophobic technologies and opens new avenues for further research into wear-resistant and environmentally resilient coatings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yy完成签到 ,获得积分10
1秒前
丸子放盆里完成签到,获得积分10
1秒前
疯狂的青亦完成签到,获得积分10
1秒前
zzz完成签到,获得积分10
3秒前
zink发布了新的文献求助10
3秒前
小杰完成签到 ,获得积分10
3秒前
qaq发布了新的文献求助10
3秒前
子时月发布了新的文献求助10
4秒前
5秒前
是冬天完成签到 ,获得积分10
5秒前
Lxxx_7完成签到 ,获得积分10
5秒前
12完成签到 ,获得积分10
6秒前
sai发布了新的文献求助10
6秒前
CodeCraft应助wzxxxx采纳,获得10
7秒前
Andy完成签到 ,获得积分10
7秒前
小可完成签到 ,获得积分10
8秒前
斯文败类应助shanjianjie采纳,获得20
8秒前
笋蒸鱼发布了新的文献求助10
8秒前
1321完成签到,获得积分10
8秒前
huahua完成签到,获得积分10
8秒前
66应助马佳凯采纳,获得10
11秒前
林溪完成签到,获得积分10
11秒前
Amber应助CTX采纳,获得10
11秒前
lan完成签到 ,获得积分10
11秒前
共享精神应助Elaine采纳,获得10
13秒前
13秒前
安静一曲完成签到 ,获得积分10
13秒前
14秒前
完美世界应助嘎嘎顺利采纳,获得10
14秒前
崔靥完成签到,获得积分10
14秒前
15秒前
阿敏关注了科研通微信公众号
15秒前
一只绒可可完成签到,获得积分10
15秒前
CBY完成签到,获得积分10
15秒前
15秒前
QYPANG完成签到,获得积分10
16秒前
子时月完成签到,获得积分10
17秒前
脑洞疼应助xlx采纳,获得10
17秒前
jym完成签到,获得积分10
17秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740