sEMG-Based Gesture Recognition Via Multi-Feature Fusion Network

计算机科学 人工智能 模式识别(心理学) 特征(语言学) 手势识别 手势 特征提取 语音识别 计算机视觉 哲学 语言学
作者
Zekun Chen,Xiupeng Qiao,Shili Liang,Tao Yan,Zhongye Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/jbhi.2024.3522306
摘要

The sparse surface electromyography-based gesture recognition suffers from the problems of feature information not richness and poor generalization to small sample data. Therefore, a multi-feature fusion network (MFF-Net) model is proposed in this paper. This network incorporates long short-term memory (LSTM) and the attention mechanism into the model, and three sub-networks are constructed for enhancement of features in the time, frequency and spatial domains, respectively. The introduced attention mechanism enhances useful features and weakens useless ones. Then, the processed features are spliced and stacked, which strengthens the information between time and channel to enrich features in sparse sEMG, improved model performance for feature processing. To further validate that the proposed model is effective in improving gesture recognition accuracy. We selected 18 gesture recognition tasks from the NinaPro DB3 and DB7 datasets for experimental evaluation. Among them, ablation experiments were conducted on intact subjects data in DB7. The experimental results show that the proposed model reaches the current optimal in gesture recognition, with 92.47% classification accuracy. Moreover, the model can be transferred to gesture recognition for small sample amputees data, which is also effective in solving insufficient data problem. Two amputees (in DB7) recognition rate have significantly improved from 60.35% to 84.93%, while eleven amputees (in DB3) recognition rate have significantly improved from 71.84% to 82.00%. It is demonstrated the applicability and generalization of the proposed model transfer learning to the amputees gesture recognition task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_LN3xyn发布了新的文献求助10
3秒前
5秒前
6秒前
烟花应助100采纳,获得10
7秒前
hgf应助pophoo采纳,获得10
10秒前
海盗船长完成签到,获得积分10
10秒前
11秒前
洛洛发布了新的文献求助10
11秒前
迅速的花生完成签到,获得积分10
12秒前
进击的研狗完成签到 ,获得积分10
15秒前
洛洛完成签到,获得积分10
18秒前
valorb完成签到,获得积分0
18秒前
19秒前
20秒前
科研通AI5应助独特的大船采纳,获得10
23秒前
狂看文献完成签到,获得积分10
23秒前
am完成签到,获得积分10
24秒前
落樱幻梦染星尘完成签到,获得积分10
25秒前
JamesPei应助迅速的花生采纳,获得10
25秒前
26秒前
Qiqinnn完成签到 ,获得积分10
29秒前
Owen应助超帅怜阳采纳,获得10
30秒前
35秒前
sun完成签到,获得积分10
38秒前
40秒前
芜湖起飞完成签到 ,获得积分10
42秒前
lbx完成签到,获得积分10
42秒前
43秒前
科研通AI2S应助科研通管家采纳,获得10
48秒前
英俊的铭应助科研通管家采纳,获得10
48秒前
48秒前
48秒前
共享精神应助科研通管家采纳,获得10
48秒前
迟大猫应助科研通管家采纳,获得10
48秒前
乐乐应助科研通管家采纳,获得10
48秒前
崔宁宁完成签到 ,获得积分10
49秒前
49秒前
超帅怜阳发布了新的文献求助10
50秒前
飘飘完成签到 ,获得积分10
52秒前
52秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737279
求助须知:如何正确求助?哪些是违规求助? 3281146
关于积分的说明 10023095
捐赠科研通 2997818
什么是DOI,文献DOI怎么找? 1644858
邀请新用户注册赠送积分活动 782224
科研通“疑难数据库(出版商)”最低求助积分说明 749717