解聚
单体
化学
甲基丙烯酸甲酯
聚合物
高分子化学
聚合
链式转移
甲基丙烯酸酯
化学工程
溶剂
自由基聚合
有机化学
工程类
作者
Kalista Jager,Gayathri Dev Ammini,Pieter‐Jan Voorter,Priya Subramanian,Anil Kumar,Athina Anastasaki,Tanja Junkers
摘要
A continuous flow setup comprising an inline dialysis unit for immediate monomer removal is used for the depolymerization of poly(methyl methacrylate) (pMMA), synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. The approach used allows one to carry out solution depolymerizations at much higher polymer content compared to batch processes while maintaining high depolymerization conversions. pMMA is efficiently depolymerized in the flow reactor, yielding up to 68% monomer recovery under catalyst-free reaction conditions at 160 °C, starting from a 1 molar repeat unit concentration, which is a 20-fold improvement compared to previous batch studies. This was achieved by using the inline dialysis to continuously remove monomer from the depolymerization solution and hence continuously shifting of the depolymerization equilibrium to the recycling side. Depolymerizations at various temperatures, starting polymer concentrations, and reactor setup modifications are investigated, clearly showing the highly advantageous effect of the monomer removal on the reaction. The employed approach represents a significant advancement toward the industrial feasibility of depolymerization of methacrylates by lowering the solvent use, expanding its temperature operation window, and bringing polymer contents to a practically relevant level.
科研通智能强力驱动
Strongly Powered by AbleSci AI