Correlation between triglyceride-glucose index and atrial fibrillation in acute coronary syndrome patients: a retrospective cohort study and the establishment of a LASSO-Logistic regression model

医学 逻辑回归 心房颤动 急性冠脉综合征 内科学 逐步回归 回顾性队列研究 Lasso(编程语言) 接收机工作特性 人口 心脏病学 心肌梗塞 万维网 计算机科学 环境卫生
作者
Chenglong Yao,Yuan Qin,Xuhe Yan,Zijian Zhao,B Q Wang,Yu Bai,Tianwang Zhang,Yazhu Hou
出处
期刊:BMC Cardiovascular Disorders [Springer Nature]
卷期号:24 (1)
标识
DOI:10.1186/s12872-024-04385-x
摘要

Insulin resistance (IR) is an independent predictor of atrial fibrillation (AF), but the specific utility of the triglyceride-glucose (TyG) index as a predictive marker for the incidence of AF in the acute coronary syndrome (ACS) population has not yet been explored. To explore the correlation between TyG index and the risk of AF in ACS patients and to establish a predictive model. A retrospective study was conducted on 613 ACS patients admitted to the Department of Cardiovascular Medicine at the First Teaching Hospital of Tianjin University of Traditional Chinese Medicine from January 2022 to September 2024. Patients were divided into four groups based on quartiles of TyG index. Patients were further divided into two groups based on the occurrence of AF: the AF group and the non-AF group. Patient information was collected through the hospital's HIS system. Variable selection was completed using LASSO regression algorithms. Multivariate logistic bidirectional stepwise regression analysis was used to explore the correlation between the TyG index and the risk of AF in ACS patients and to construct a regression model. Three different models were constructed by adjusting for confounding factors and restricted cubic spline plots were drawn to validate the significance of the TyG index combined with AF further. The predictive value of the LASSO-multivariate logistic bidirectional stepwise regression model and the TyG index alone for predicting AF in ACS patients was analyzed using the receiver operating characteristic curve. The LASSO-multivariate logistic bidirectional stepwise regression algorithm showed that coronary heart disease (CHD), valvular heart disease (VHD), TyG, age (AGE), and diastolic blood pressure (DBP) were risk factors for AF in ACS. The restricted cubic spline model demonstrated a significant linear relationship between a higher TyG index and an increased risk of AF in the ACS patient population. The area under the curve (AUC) for predicting AF in ACS patients using the TyG index and the LASSO-multivariate logistic bidirectional stepwise regression model was 0.65(95%CI = 0.58 ~ 0.73) and 0.71(95%CI = 0.65 ~ 0.77) respectively. Additionally, the correlation between the TyG index and AF was consistent across different subgroups. In ACS patients, the TyG index is a stable and independent predictor of AF, with specific clinical value in identifying the occurrence of AF in this population.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
000000000发布了新的文献求助10
2秒前
饼干玮玮完成签到,获得积分10
4秒前
夏樱完成签到 ,获得积分10
4秒前
4秒前
xxsnn发布了新的文献求助10
5秒前
干不二完成签到,获得积分20
5秒前
哒哒哒发布了新的文献求助10
5秒前
bkagyin应助简单初曼采纳,获得10
6秒前
iNk应助权雨灵采纳,获得10
7秒前
桐桐应助fagfagsf采纳,获得10
7秒前
nenoaowu发布了新的文献求助10
8秒前
阿斯达完成签到,获得积分20
8秒前
Ava应助干不二采纳,获得30
10秒前
10秒前
10秒前
清新的剑心完成签到 ,获得积分10
10秒前
11秒前
13秒前
Arhtur完成签到,获得积分10
14秒前
阳光的静芙完成签到,获得积分20
14秒前
15秒前
wk0635完成签到,获得积分10
15秒前
烟花应助王冠军采纳,获得10
15秒前
zhangmeimei发布了新的文献求助10
15秒前
成就钧发布了新的文献求助10
15秒前
16秒前
光电很亮发布了新的文献求助10
17秒前
Hello应助Joey采纳,获得20
17秒前
19秒前
19秒前
panx发布了新的文献求助10
20秒前
不锈钢臭宝宝完成签到,获得积分10
20秒前
胖头鱼please关注了科研通微信公众号
21秒前
22秒前
22秒前
22秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Agenda-setting and journalistic translation: The New York Times in English, Spanish and Chinese 1000
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Publish or Perish: Perceived Benefits versus Unintended Consequences, Second Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3390166
求助须知:如何正确求助?哪些是违规求助? 3001921
关于积分的说明 8800750
捐赠科研通 2688466
什么是DOI,文献DOI怎么找? 1472653
科研通“疑难数据库(出版商)”最低求助积分说明 681042
邀请新用户注册赠送积分活动 673707