Predicting Diagnostic Progression to Schizophrenia or Bipolar Disorder via Machine Learning

双相情感障碍 精神分裂症(面向对象编程) 精神科 医学 逻辑回归 接收机工作特性 精神疾病 队列 情感障碍症 儿科 心理健康 内科学 心情 狂躁
作者
Lasse Hansen,Martin Bernstorff,Kenneth Enevoldsen,Sara Kolding,Jakob Grøhn Damgaard,Erik Perfalk,Kristoffer L. Nielbo,Andreas Aalkjær Danielsen,Søren Dinesen Østergaard
出处
期刊:JAMA Psychiatry [American Medical Association]
标识
DOI:10.1001/jamapsychiatry.2024.4702
摘要

Importance The diagnosis of schizophrenia and bipolar disorder is often delayed several years despite illness typically emerging in late adolescence or early adulthood, which impedes initiation of targeted treatment. Objective To investigate whether machine learning models trained on routine clinical data from electronic health records (EHRs) can predict diagnostic progression to schizophrenia or bipolar disorder among patients undergoing treatment in psychiatric services for other mental illness. Design, Setting, and Participants This cohort study was based on data from EHRs from the Psychiatric Services of the Central Denmark Region. All patients aged 15 to 60 years with at least 2 contacts (at least 3 months apart) with the Psychiatric Services of the Central Denmark Region between January 1, 2013, and November 21, 2016, were included. Analysis occurred from December 2022 to November 2024. Exposures Predictors based on EHR data, including medications, diagnoses, and clinical notes. Main Outcomes and Measures Diagnostic transition to schizophrenia or bipolar disorder within 5 years, predicted 1 day before outpatient contacts by means of elastic net regularized logistic regression and extreme gradient boosting (XGBoost) models. The area under the receiver operating characteristic curve (AUROC) was used to determine the best performing model. Results The study included 24 449 patients (median [Q1-Q3] age at time of prediction, 32.2 [24.2-42.5] years; 13 843 female [56.6%]) and 398 922 outpatient contacts. Transition to the first occurrence of either schizophrenia or bipolar disorder was predicted by the XGBoost model, with an AUROC of 0.70 (95% CI, 0.70-0.70) on the training set and 0.64 (95% CI, 0.63-0.65) on the test set, which consisted of 2 held-out hospital sites. At a predicted positive rate of 4%, the XGBoost model had a sensitivity of 9.3%, a specificity of 96.3%, and a positive predictive value (PPV) of 13.0%. Predicting schizophrenia separately yielded better performance (AUROC, 0.80; 95% CI, 0.79-0.81; sensitivity, 19.4%; specificity, 96.3%; PPV, 10.8%) than was the case for bipolar disorder (AUROC, 0.62, 95% CI, 0.61-0.63; sensitivity, 9.9%; specificity, 96.2%; PPV, 8.4%). Clinical notes proved particularly informative for prediction. Conclusions and Relevance These findings suggest that it is possible to predict diagnostic transition to schizophrenia and bipolar disorder from routine clinical data extracted from EHRs, with schizophrenia being notably easier to predict than bipolar disorder.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助古的古的采纳,获得10
3秒前
椒盐丸子发布了新的文献求助10
3秒前
英姑应助wwaakk采纳,获得10
4秒前
苏以祀发布了新的文献求助10
4秒前
善学以致用应助daling采纳,获得10
5秒前
5秒前
2023AKY完成签到,获得积分10
6秒前
lala发布了新的文献求助10
8秒前
科研通AI5应助早日毕业采纳,获得30
8秒前
huiry发布了新的文献求助10
9秒前
ayayaya完成签到 ,获得积分10
9秒前
韋晴完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
10秒前
zzz完成签到,获得积分10
10秒前
科目三应助开心的火龙果采纳,获得10
11秒前
11秒前
科目三应助风趣的觅山采纳,获得10
12秒前
JamesPei应助wsyiming采纳,获得10
12秒前
13秒前
乐乐发布了新的文献求助30
13秒前
14秒前
14秒前
CodeCraft应助幸福梦旋采纳,获得10
15秒前
caiiiii发布了新的文献求助10
15秒前
研友_pLwqvZ完成签到,获得积分10
15秒前
英姑应助美好斓采纳,获得20
16秒前
17秒前
调皮誉发布了新的文献求助10
18秒前
一二完成签到,获得积分10
18秒前
莉莉发布了新的文献求助10
19秒前
19秒前
chompa完成签到,获得积分10
19秒前
20秒前
平常馒头完成签到 ,获得积分10
20秒前
乐乐应助乐乐采纳,获得30
21秒前
21秒前
崔雨旋发布了新的文献求助10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540583
求助须知:如何正确求助?哪些是违规求助? 3117868
关于积分的说明 9332838
捐赠科研通 2815677
什么是DOI,文献DOI怎么找? 1547682
邀请新用户注册赠送积分活动 721099
科研通“疑难数据库(出版商)”最低求助积分说明 712463