Engineering carbon assimilation in plants

鲁比斯科 固碳 光合作用 碳同化 同化(音韵学) 蓝藻 碳通量 生化工程 生物 藻类 碳循环 叶绿体 代谢工程 合成生物学 植物 生物化学 计算生物学 细菌 生态学 生态系统 工程类 基因 哲学 遗传学 语言学
作者
Kezhen Qin,Xingyan Ye,Shanshan Luo,Alisdair R. Fernie,Youjun Zhang
出处
期刊:Journal of Integrative Plant Biology [Wiley]
标识
DOI:10.1111/jipb.13825
摘要

Abstract Carbon assimilation is a crucial part of the photosynthetic process, wherein inorganic carbon, typically in the form of CO 2 , is converted into organic compounds by living organisms, including plants, algae, and a subset of bacteria. Although several carbon fixation pathways have been elucidated, the Calvin–Benson–Bassham (CBB) cycle remains fundamental to carbon metabolism, playing a pivotal role in the biosynthesis of starch and sucrose in plants, algae, and cyanobacteria. However, Ribulose‐1,5‐bisphosphate carboxylase/oxygenase (RuBisCO), the key carboxylase enzyme of the CBB cycle, exhibits low kinetic efficiency, low substrate specificity, and high temperature sensitivity, all of which have the potential to limit flux through this pathway. Consequently, RuBisCO needs to be present at very high concentrations, which is one of the factors contributing to its status as the most prevalent protein on Earth. Numerous attempts have been made to optimize the catalytic efficiency of RuBisCO and thereby promote plant growth. Furthermore, the limitations of this process highlight the potential benefits of engineering or discovering more efficient carbon fixation mechanisms, either by improving RuBisCO itself or by introducing alternative pathways. Here, we review advances in artificial carbon assimilation engineering, including the integration of synthetic biology, genetic engineering, metabolic pathway optimization, and artificial intelligence in order to create plants capable of performing more efficient photosynthesis. We additionally provide a perspective of current challenges and potential solutions alongside a personal opinion of the most promising future directions of this emerging field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
3秒前
4秒前
5秒前
Janee7完成签到,获得积分10
5秒前
quhayley应助Rossie采纳,获得30
5秒前
6秒前
6秒前
lll发布了新的文献求助10
6秒前
JKL发布了新的文献求助10
7秒前
8秒前
sweety发布了新的文献求助10
8秒前
油条完成签到,获得积分10
10秒前
10秒前
112发布了新的文献求助10
10秒前
CAOHOU应助贝尔采纳,获得10
10秒前
Hello应助tjzhaoll采纳,获得10
11秒前
Jason.Z发布了新的文献求助10
12秒前
小花发布了新的文献求助10
12秒前
遇上就这样吧应助Janee7采纳,获得10
12秒前
JinkFun发布了新的文献求助10
14秒前
Lucas应助Jason.Z采纳,获得30
17秒前
热心市民小红花应助蓝刺采纳,获得10
19秒前
19秒前
19秒前
慕青应助JKL采纳,获得10
19秒前
英姑应助miemie66采纳,获得10
19秒前
sweety完成签到,获得积分10
20秒前
20秒前
JamesPei应助123采纳,获得10
23秒前
虎歌发布了新的文献求助10
24秒前
喜悦一德发布了新的文献求助10
24秒前
26秒前
山复尔尔应助翁雁丝采纳,获得10
27秒前
小白聚酯完成签到,获得积分10
27秒前
112发布了新的文献求助20
28秒前
ljx完成签到 ,获得积分10
29秒前
houfei发布了新的文献求助10
29秒前
朴素黑猫发布了新的文献求助10
30秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962205
求助须知:如何正确求助?哪些是违规求助? 3508430
关于积分的说明 11140874
捐赠科研通 3241109
什么是DOI,文献DOI怎么找? 1791341
邀请新用户注册赠送积分活动 872825
科研通“疑难数据库(出版商)”最低求助积分说明 803382