Engineering carbon assimilation in plants

鲁比斯科 固碳 光合作用 碳同化 同化(音韵学) 蓝藻 碳通量 生化工程 生物 藻类 碳循环 叶绿体 代谢工程 合成生物学 植物 生物化学 计算生物学 细菌 生态学 生态系统 工程类 基因 哲学 遗传学 语言学
作者
Kezhen Qin,Xingyan Ye,Shanshan Luo,Alisdair R. Fernie,Youjun Zhang
出处
期刊:Journal of Integrative Plant Biology [Wiley]
卷期号:67 (4): 926-948 被引量:13
标识
DOI:10.1111/jipb.13825
摘要

Abstract Carbon assimilation is a crucial part of the photosynthetic process, wherein inorganic carbon, typically in the form of CO 2 , is converted into organic compounds by living organisms, including plants, algae, and a subset of bacteria. Although several carbon fixation pathways have been elucidated, the Calvin–Benson–Bassham (CBB) cycle remains fundamental to carbon metabolism, playing a pivotal role in the biosynthesis of starch and sucrose in plants, algae, and cyanobacteria. However, Ribulose‐1,5‐bisphosphate carboxylase/oxygenase (RuBisCO), the key carboxylase enzyme of the CBB cycle, exhibits low kinetic efficiency, low substrate specificity, and high temperature sensitivity, all of which have the potential to limit flux through this pathway. Consequently, RuBisCO needs to be present at very high concentrations, which is one of the factors contributing to its status as the most prevalent protein on Earth. Numerous attempts have been made to optimize the catalytic efficiency of RuBisCO and thereby promote plant growth. Furthermore, the limitations of this process highlight the potential benefits of engineering or discovering more efficient carbon fixation mechanisms, either by improving RuBisCO itself or by introducing alternative pathways. Here, we review advances in artificial carbon assimilation engineering, including the integration of synthetic biology, genetic engineering, metabolic pathway optimization, and artificial intelligence in order to create plants capable of performing more efficient photosynthesis. We additionally provide a perspective of current challenges and potential solutions alongside a personal opinion of the most promising future directions of this emerging field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
劲进完成签到,获得积分10
刚刚
lizhuang完成签到 ,获得积分10
1秒前
酱攸完成签到,获得积分10
1秒前
1秒前
传奇3应助zhuzhu的江湖采纳,获得10
2秒前
Ms发布了新的文献求助10
2秒前
Harbour发布了新的文献求助10
2秒前
英俊的铭应助可爱的弘文采纳,获得10
3秒前
orixero应助小飞鼠采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助20
4秒前
4秒前
神勇从波完成签到 ,获得积分10
4秒前
今后应助乔乔采纳,获得10
4秒前
852应助唐飒采纳,获得10
5秒前
18746005898发布了新的文献求助10
5秒前
5秒前
yeahokk完成签到,获得积分10
5秒前
5秒前
5秒前
恨海情天完成签到,获得积分10
6秒前
隐形曼青应助自然黄豆采纳,获得10
6秒前
Tian发布了新的文献求助10
7秒前
7秒前
hu123发布了新的文献求助10
7秒前
萧瑟处完成签到,获得积分10
7秒前
大个应助577采纳,获得10
8秒前
彭于晏应助Ms采纳,获得10
8秒前
慕青应助烯灯采纳,获得10
10秒前
10秒前
10秒前
英姑应助悦耳的盼芙采纳,获得10
10秒前
林林总总发布了新的文献求助10
10秒前
10秒前
深情安青应助lisali采纳,获得10
11秒前
11秒前
阿猫发布了新的文献求助10
11秒前
11秒前
Hello应助稳重的雅绿采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836