Engineering carbon assimilation in plants

鲁比斯科 固碳 光合作用 碳同化 同化(音韵学) 蓝藻 碳通量 生化工程 生物 藻类 碳循环 叶绿体 代谢工程 合成生物学 植物 生物化学 计算生物学 细菌 生态学 生态系统 工程类 语言学 哲学 遗传学 基因
作者
Kezhen Qin,Xingyan Ye,Shanshan Luo,Alisdair R. Fernie,Youjun Zhang
出处
期刊:Journal of Integrative Plant Biology [Wiley]
标识
DOI:10.1111/jipb.13825
摘要

Abstract Carbon assimilation is a crucial part of the photosynthetic process, wherein inorganic carbon, typically in the form of CO 2 , is converted into organic compounds by living organisms, including plants, algae, and a subset of bacteria. Although several carbon fixation pathways have been elucidated, the Calvin–Benson–Bassham (CBB) cycle remains fundamental to carbon metabolism, playing a pivotal role in the biosynthesis of starch and sucrose in plants, algae, and cyanobacteria. However, Ribulose‐1,5‐bisphosphate carboxylase/oxygenase (RuBisCO), the key carboxylase enzyme of the CBB cycle, exhibits low kinetic efficiency, low substrate specificity, and high temperature sensitivity, all of which have the potential to limit flux through this pathway. Consequently, RuBisCO needs to be present at very high concentrations, which is one of the factors contributing to its status as the most prevalent protein on Earth. Numerous attempts have been made to optimize the catalytic efficiency of RuBisCO and thereby promote plant growth. Furthermore, the limitations of this process highlight the potential benefits of engineering or discovering more efficient carbon fixation mechanisms, either by improving RuBisCO itself or by introducing alternative pathways. Here, we review advances in artificial carbon assimilation engineering, including the integration of synthetic biology, genetic engineering, metabolic pathway optimization, and artificial intelligence in order to create plants capable of performing more efficient photosynthesis. We additionally provide a perspective of current challenges and potential solutions alongside a personal opinion of the most promising future directions of this emerging field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助GC采纳,获得10
刚刚
WoneReshen完成签到 ,获得积分10
刚刚
yyy完成签到,获得积分10
1秒前
1秒前
Dora发布了新的文献求助30
1秒前
2秒前
chenajp发布了新的文献求助10
2秒前
2秒前
niuma发布了新的文献求助10
3秒前
旺旺发布了新的文献求助10
3秒前
小至完成签到,获得积分10
5秒前
酷拽小茄发布了新的文献求助50
6秒前
是氓呀完成签到,获得积分10
6秒前
小小小西发布了新的文献求助10
7秒前
可爱的函函应助slby采纳,获得10
8秒前
10秒前
洁净的钢铁侠完成签到,获得积分10
10秒前
淡定成风完成签到,获得积分10
10秒前
11秒前
11秒前
科研通AI5应助mycroft采纳,获得10
11秒前
11秒前
916应助gao_o采纳,获得10
11秒前
希望天下0贩的0应助居北采纳,获得10
11秒前
酷拽小茄完成签到,获得积分10
12秒前
无花果应助Zuguo采纳,获得30
12秒前
12秒前
Dora完成签到,获得积分10
13秒前
13秒前
墨浮完成签到,获得积分10
14秒前
科研通AI5应助阿切采纳,获得10
14秒前
14秒前
聪明花生发布了新的文献求助10
15秒前
15秒前
平常的毛豆应助11111111111采纳,获得10
16秒前
Q11发布了新的文献求助10
17秒前
张同学发布了新的文献求助10
18秒前
MAODIE完成签到,获得积分10
18秒前
yykeyan完成签到,获得积分10
19秒前
沉静盼易发布了新的文献求助10
19秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842060
求助须知:如何正确求助?哪些是违规求助? 3384246
关于积分的说明 10533237
捐赠科研通 3104526
什么是DOI,文献DOI怎么找? 1709680
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 773957