羊毛甾醇
酿酒酵母
生物化学
代谢工程
三萜
甲戊酸途径
化学
酶
酵母
法尼基二磷酸合酶
生物合成
生物
甾醇
胆固醇
医学
替代医学
病理
作者
Hao Guo,Huiyan Wang,Tongtong Chen,Liwei Guo,Lars M. Blank,Birgitta E. Ebert,Yi‐Xin Huo
标识
DOI:10.1021/acssynbio.2c00098
摘要
Triterpenoids are a subgroup of terpenoids and have wide applications in the food, cosmetics, and pharmaceutical industries. The heterologous production of various triterpenoids in Saccharomyces cerevisiae, as well as other microbes, has been successfully implemented as these production hosts not only produce the precursor of triterpenoids 2,3-oxidosqualene by the mevalonate pathway but also allow simple expression of plant membrane-anchored enzymes. Nevertheless, 2,3-oxidosqualene is natively converted to lanosterol catalyzed by the endogenous lanosterol synthase (Erg7p), causing low production of recombinant triterpenoids. While simple deletion of ERG7 was not effective, in this study, the critical amino acid residues of Erg7p were engineered to lower this critical enzyme activity. The engineered S. cerevisiae indeed accumulated 2,3-oxidosqualene up to 180 mg/L. Engineering triterpenoid synthesis into the ERG7-modified strain resulted in 7.3- and 3-fold increases in the titers of dammarane-type and lupane-type triterpenoids, respectively. This study presents an efficient inducer-free strategy for lowering Erg7p activity, thereby providing 2,3-oxidosqualene for the enhanced production of various triterpenoids.
科研通智能强力驱动
Strongly Powered by AbleSci AI