Colloquium : Multiscale modeling of brain network organization

物理 复杂网络 神经科学 数据科学 鉴定(生物学) 计算机科学 多尺度建模 认知科学 人工智能 心理学 生物 生物信息学 植物 万维网
作者
Charley Presigny,Fabrizio De Vico Fallani
出处
期刊:Reviews of Modern Physics [American Physical Society]
卷期号:94 (3) 被引量:9
标识
DOI:10.1103/revmodphys.94.031002
摘要

A complete understanding of the brain requires an integrated description of the numerous scales of neural organization. It means studying the interplay of genes, synapses, and even whole brain regions which ultimately leads to different types of behavior, from perception to action, while asleep or awake. Yet, multiscale brain modeling is challenging, in part because of the difficulty to access simultaneously to information from multiple spatiotemporal scales. While some insights have been gained on the role of specific microcircuits (e.g., thalamocortical), a comprehensive characterization of how changes occurring at one scale can have an impact on other ones, remains poorly understood. Recent efforts to address this gap include the development of new analytical tools mostly adapted from network science and dynamical systems theory. These theoretical contributions provide a powerful framework to analyze and model interconnected complex systems exhibiting interactions within and between different scales, or layers. Here, we present recent advances for the characterization of the multiscale brain organization in terms of structure-function, oscillation frequencies and temporal evolution. Efforts are reviewed on the multilayer network properties underlying higher-order organization of neuronal assemblies, as well as on the identification of multimodal network-based biomarkers of brain pathologies, such as Alzheimer's disease. We conclude this Colloquium with a perspective discussion on how recent results from multilayer network theory, involving generative modeling, controllability and machine learning, could be adopted to address new questions in modern neuroscience.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无奈芮发布了新的文献求助10
刚刚
风雨无阻完成签到,获得积分10
2秒前
sylviawj完成签到,获得积分10
2秒前
3秒前
81s关注了科研通微信公众号
4秒前
7秒前
彭凯完成签到,获得积分10
7秒前
Dandy完成签到,获得积分10
8秒前
8秒前
9秒前
bill完成签到,获得积分10
9秒前
斯文败类应助次一口8采纳,获得10
9秒前
Kenina完成签到,获得积分10
11秒前
13秒前
彭凯发布了新的文献求助10
14秒前
柯氏气团不是气团完成签到,获得积分10
15秒前
共享精神应助你好采纳,获得10
15秒前
Ai完成签到,获得积分10
15秒前
淡定的巧荷完成签到,获得积分10
16秒前
栀子发布了新的文献求助10
17秒前
刺猬快快跑完成签到,获得积分10
18秒前
华仔应助tianyy采纳,获得10
19秒前
19秒前
白小施发布了新的文献求助10
19秒前
一一应助那小子真帅采纳,获得10
20秒前
22秒前
23秒前
东华完成签到,获得积分20
23秒前
Owen应助HelenZ采纳,获得10
24秒前
布同完成签到,获得积分10
26秒前
白小施完成签到,获得积分10
26秒前
yyy完成签到,获得积分10
26秒前
蝴蝶发布了新的文献求助10
26秒前
benxiaohai完成签到,获得积分0
27秒前
Owen应助666采纳,获得10
27秒前
Notorious完成签到,获得积分10
27秒前
研友_VZG7GZ应助学丫采纳,获得20
28秒前
28秒前
小峰峰发布了新的文献求助10
29秒前
希望天下0贩的0应助Liu采纳,获得10
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461359
求助须知:如何正确求助?哪些是违规求助? 3055047
关于积分的说明 9046247
捐赠科研通 2744983
什么是DOI,文献DOI怎么找? 1505792
科研通“疑难数据库(出版商)”最低求助积分说明 695820
邀请新用户注册赠送积分活动 695264