A deep transfer regression method based on seed replacement considering balanced domain adaptation

计算机科学 学习迁移 人工智能 一般化 机器学习 回归 知识转移 领域(数学分析) 特征(语言学) 领域知识 深度学习 回归分析 功能(生物学) 适应(眼睛) 数据挖掘 统计 数学 哲学 数学分析 物理 光学 生物 进化生物学 知识管理 语言学
作者
Teng Zhang,Hao Sun,Fangyu Peng,Shengqiang Zhao,Rong Yan
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:115: 105238-105238 被引量:11
标识
DOI:10.1016/j.engappai.2022.105238
摘要

With the development of deep transfer learning, the generalization abilities of models in similar scenarios have been significantly improved. However, for regression tasks, either the marginal distribution or the conditional distribution is usually ignored. In addition, initiative regarding the representation and learning of domain knowledge is lacking due to the reliance on the loss function. A deep transfer regression method based on seed replacement considering balanced domain adaptation, called DTRSR, is proposed in this work. DTRSR is composed of four parts: structure freezing and parameter transfer, deep feature extraction, seed replacement and a fusion loss function. First, domain knowledge is captured at the model level through structure freezing and parameter transfer. Second, seed replacement is used for knowledge learning in the source and target domains at the data level. Finally, a fusion loss function considering balanced distribution adaptation is constructed to acquire domain knowledge at the loss level. In summary, domain knowledge is sufficiently learned through DTRSR. In addition, seed replacement improves the initiative of knowledge learning instead of relying only on the loss function to learn automatically. DTRSR is compared on three datasets, namely, Tool Wear, Battery Capacity and Robot Machining Errors, with nine other methods. The proposed method achieves excellent performance on most tasks, which validates its effectiveness and great potential in regression tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
AD发布了新的文献求助10
1秒前
1秒前
1秒前
烟花应助kiyo采纳,获得10
1秒前
爆米花应助原本采纳,获得10
1秒前
2秒前
CipherSage应助李时珍采纳,获得10
2秒前
ahxb完成签到,获得积分10
2秒前
2秒前
风语者完成签到 ,获得积分10
2秒前
潘啊潘完成签到 ,获得积分10
3秒前
3秒前
冷傲又菡发布了新的文献求助10
3秒前
关尔匕禾页完成签到,获得积分10
3秒前
甜甜醉香完成签到,获得积分10
4秒前
tanhaili完成签到,获得积分10
4秒前
虚心的垣完成签到,获得积分10
4秒前
zyf发布了新的文献求助10
5秒前
落寞臻完成签到,获得积分10
5秒前
smottom应助yqq采纳,获得10
5秒前
流心荷包蛋关注了科研通微信公众号
5秒前
5秒前
6秒前
顾矜应助铁观音采纳,获得10
6秒前
6秒前
spzdss完成签到,获得积分10
6秒前
kbkyvuy发布了新的文献求助10
7秒前
7秒前
tanhaili发布了新的文献求助10
7秒前
研友_VZG7GZ应助Qwe采纳,获得10
7秒前
情怀应助张一涛采纳,获得10
8秒前
木木完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
10秒前
10秒前
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5692559
求助须知:如何正确求助?哪些是违规求助? 5089055
关于积分的说明 15208836
捐赠科研通 4849783
什么是DOI,文献DOI怎么找? 2601280
邀请新用户注册赠送积分活动 1553052
关于科研通互助平台的介绍 1511274