A deep transfer regression method based on seed replacement considering balanced domain adaptation

计算机科学 学习迁移 人工智能 一般化 机器学习 回归 知识转移 领域(数学分析) 特征(语言学) 领域知识 深度学习 回归分析 功能(生物学) 适应(眼睛) 数据挖掘 统计 数学 哲学 数学分析 物理 光学 生物 进化生物学 知识管理 语言学
作者
Teng Zhang,Hao Sun,Fangyu Peng,Shengqiang Zhao,Rong Yan
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:115: 105238-105238 被引量:11
标识
DOI:10.1016/j.engappai.2022.105238
摘要

With the development of deep transfer learning, the generalization abilities of models in similar scenarios have been significantly improved. However, for regression tasks, either the marginal distribution or the conditional distribution is usually ignored. In addition, initiative regarding the representation and learning of domain knowledge is lacking due to the reliance on the loss function. A deep transfer regression method based on seed replacement considering balanced domain adaptation, called DTRSR, is proposed in this work. DTRSR is composed of four parts: structure freezing and parameter transfer, deep feature extraction, seed replacement and a fusion loss function. First, domain knowledge is captured at the model level through structure freezing and parameter transfer. Second, seed replacement is used for knowledge learning in the source and target domains at the data level. Finally, a fusion loss function considering balanced distribution adaptation is constructed to acquire domain knowledge at the loss level. In summary, domain knowledge is sufficiently learned through DTRSR. In addition, seed replacement improves the initiative of knowledge learning instead of relying only on the loss function to learn automatically. DTRSR is compared on three datasets, namely, Tool Wear, Battery Capacity and Robot Machining Errors, with nine other methods. The proposed method achieves excellent performance on most tasks, which validates its effectiveness and great potential in regression tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文静的夜阑完成签到,获得积分20
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
苹果有毒发布了新的文献求助10
1秒前
小石头完成签到,获得积分10
3秒前
4秒前
13013523252发布了新的文献求助10
4秒前
Jasper应助Walden采纳,获得10
4秒前
目土土完成签到 ,获得积分10
7秒前
海盐气泡水完成签到,获得积分10
8秒前
9秒前
十二十三完成签到 ,获得积分10
9秒前
10秒前
火星完成签到,获得积分20
10秒前
10秒前
12秒前
蓝天发布了新的文献求助10
15秒前
柔弱白羊发布了新的文献求助10
16秒前
Rosie发布了新的文献求助10
16秒前
17秒前
万能图书馆应助陈帅采纳,获得10
17秒前
赘婿应助lhy采纳,获得10
17秒前
长安心动明月完成签到 ,获得积分10
18秒前
Jared应助michael采纳,获得10
19秒前
roy完成签到,获得积分10
19秒前
19秒前
东郭迎松发布了新的文献求助10
20秒前
YYY发布了新的文献求助10
21秒前
苹果有毒完成签到,获得积分10
21秒前
22秒前
隋阳完成签到 ,获得积分10
23秒前
等待完成签到 ,获得积分10
25秒前
26秒前
26秒前
梦茵发布了新的文献求助10
27秒前
27秒前
Criminology34应助从容的尔云采纳,获得10
28秒前
李爱国应助伟大毕业旅程采纳,获得10
28秒前
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646330
求助须知:如何正确求助?哪些是违规求助? 4770916
关于积分的说明 15034350
捐赠科研通 4805112
什么是DOI,文献DOI怎么找? 2569392
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812