Interaction-Aware Personalized Trajectory Prediction for Traffic Participant Based on Interactive Multiple Model

弹道 计算机科学 聚类分析 概率逻辑 随机矩阵 概率分布 领域(数学) 人工智能 任务(项目管理) 期限(时间) 机器学习 模拟 工程类 数学 统计 量子力学 马尔可夫链 物理 天文 系统工程 纯数学
作者
Junwu Zhao,Ting Qu,Xun Gong,Hong Chen
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:8 (3): 2184-2196 被引量:2
标识
DOI:10.1109/tiv.2022.3207275
摘要

Trajectory prediction for traffic participants is a critical task for autonomous vehicles. The long-term trajectory prediction is challenging due to limited data and the dynamic characteristics of traffic participants. This paper presents an innovative interactive multiple model algorithm considering inter-vehicle interaction and driving behavior for the traffic participant's short-term and long-term trajectory prediction. The field experiment is conducted to acquire the human driver data, which is then preprocessed and analyzed with statistical methods. The clustering result of the critical gap is used to include the interactions between them, on which the gap satisfaction probability function is designed and aimed at describing the satisfaction probability of the current lane. The driving behavior is another promising candidate to improve the long-term prediction accuracy. The clustering results of the lane change duration are used to establish the lane changing models considering the driving behavior, the driving behavior probability function is designed based on the probability of each model. Then the two functions are incorporated into the adaptive transition probability matrix, where the quantitative probabilistic relations between the gap satisfaction probability and the driving behavior probability are established. The adaptive transition probability matrix is then used in the interactive multiple model algorithm. Based on the improved interactive multiple model, the personalized trajectory prediction for the traffic participant is obtained. The effectiveness of the framework is validated by simulation and field experiment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助gar采纳,获得50
1秒前
2秒前
SciGPT应助26采纳,获得10
2秒前
曹顺道发布了新的文献求助10
2秒前
3秒前
3秒前
桃李不言完成签到,获得积分10
4秒前
可可杨完成签到,获得积分10
5秒前
可靠巧荷完成签到,获得积分20
5秒前
6秒前
6秒前
小李博士发布了新的文献求助10
7秒前
7秒前
好运来发布了新的文献求助10
7秒前
安an发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
天天快乐应助ernest采纳,获得30
8秒前
单纯的戒指完成签到 ,获得积分10
8秒前
8秒前
9秒前
传奇3应助O泡果奶采纳,获得10
9秒前
ding应助会撒娇的芷烟采纳,获得10
10秒前
上官若男应助麦冬采纳,获得10
10秒前
秋言完成签到,获得积分10
10秒前
邢文瑞发布了新的文献求助10
11秒前
Tt发布了新的文献求助10
12秒前
科研力力发布了新的文献求助10
13秒前
嘻嘻完成签到,获得积分10
13秒前
14秒前
EBA发布了新的文献求助10
14秒前
JUST发布了新的文献求助10
14秒前
可靠巧荷发布了新的文献求助10
14秒前
wind完成签到,获得积分10
16秒前
17秒前
圈圈叉叉发布了新的文献求助10
18秒前
19秒前
26发布了新的文献求助10
19秒前
guoza完成签到 ,获得积分10
20秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962851
求助须知:如何正确求助?哪些是违规求助? 3508777
关于积分的说明 11143063
捐赠科研通 3241643
什么是DOI,文献DOI怎么找? 1791638
邀请新用户注册赠送积分活动 873002
科研通“疑难数据库(出版商)”最低求助积分说明 803577