Interaction-Aware Personalized Trajectory Prediction for Traffic Participant Based on Interactive Multiple Model

弹道 计算机科学 聚类分析 概率逻辑 随机矩阵 概率分布 领域(数学) 人工智能 任务(项目管理) 期限(时间) 机器学习 模拟 工程类 数学 统计 量子力学 马尔可夫链 物理 天文 系统工程 纯数学
作者
Junwu Zhao,Ting Qu,Xun Gong,Hong Chen
出处
期刊:IEEE transactions on intelligent vehicles [Institute of Electrical and Electronics Engineers]
卷期号:8 (3): 2184-2196 被引量:2
标识
DOI:10.1109/tiv.2022.3207275
摘要

Trajectory prediction for traffic participants is a critical task for autonomous vehicles. The long-term trajectory prediction is challenging due to limited data and the dynamic characteristics of traffic participants. This paper presents an innovative interactive multiple model algorithm considering inter-vehicle interaction and driving behavior for the traffic participant's short-term and long-term trajectory prediction. The field experiment is conducted to acquire the human driver data, which is then preprocessed and analyzed with statistical methods. The clustering result of the critical gap is used to include the interactions between them, on which the gap satisfaction probability function is designed and aimed at describing the satisfaction probability of the current lane. The driving behavior is another promising candidate to improve the long-term prediction accuracy. The clustering results of the lane change duration are used to establish the lane changing models considering the driving behavior, the driving behavior probability function is designed based on the probability of each model. Then the two functions are incorporated into the adaptive transition probability matrix, where the quantitative probabilistic relations between the gap satisfaction probability and the driving behavior probability are established. The adaptive transition probability matrix is then used in the interactive multiple model algorithm. Based on the improved interactive multiple model, the personalized trajectory prediction for the traffic participant is obtained. The effectiveness of the framework is validated by simulation and field experiment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沈雨琦应助傅宛白采纳,获得10
刚刚
。。。发布了新的文献求助10
刚刚
oneonlycrown完成签到,获得积分10
刚刚
刚刚
非而者厚应助纳斯达克采纳,获得10
1秒前
聪慧小霜应助纳斯达克采纳,获得10
1秒前
1秒前
1秒前
聪慧小霜应助纳斯达克采纳,获得10
2秒前
生动梦松应助纳斯达克采纳,获得30
2秒前
天天快乐应助纳斯达克采纳,获得20
2秒前
2秒前
hhhhuo完成签到,获得积分10
2秒前
luochen发布了新的文献求助10
2秒前
2秒前
关关小闲完成签到 ,获得积分10
3秒前
周煜锦发布了新的文献求助10
3秒前
CYH发布了新的文献求助10
4秒前
科研狗完成签到,获得积分10
5秒前
5秒前
5秒前
灰灰给灰灰的求助进行了留言
5秒前
glacier完成签到,获得积分10
5秒前
甜美白昼发布了新的文献求助10
5秒前
毛豆爸爸发布了新的文献求助10
5秒前
6秒前
6秒前
。。。完成签到,获得积分10
6秒前
7秒前
xiaohu发布了新的文献求助10
7秒前
ding应助干饭搞科研采纳,获得30
7秒前
7秒前
7秒前
DJ发布了新的文献求助30
7秒前
柯学家完成签到,获得积分10
8秒前
8秒前
小鹿发布了新的文献求助10
9秒前
9秒前
在望发布了新的文献求助10
9秒前
复杂平凡完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576795
求助须知:如何正确求助?哪些是违规求助? 3995951
关于积分的说明 12370915
捐赠科研通 3670012
什么是DOI,文献DOI怎么找? 2022527
邀请新用户注册赠送积分活动 1056628
科研通“疑难数据库(出版商)”最低求助积分说明 943794