Research of heart sound classification using two-dimensional features

学习迁移 计算机科学 机器学习 特征(语言学) 波形 模式识别(心理学) 构造(python库) 人工智能 语言学 电信 哲学 程序设计语言 雷达
作者
Menghui Xiang,Junbin Zang,Juliang Wang,Haoxin Wang,Chenzheng Zhou,Ruiyu Bi,Zhidong Zhang,Chenyang Xue
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:79: 104190-104190 被引量:16
标识
DOI:10.1016/j.bspc.2022.104190
摘要

Heart sound plays a vital role to achieve an accurate diagnosis of cardiovascular diseases, and its auxiliary diagnosis methods have become a hotspot. Aim: In this paper, novel classification algorithms that transfer heart sound classification into image classification are proposed to select better features. The features used were all important in clinical diagnosis. Method: First, four open datasets are used to construct an integrated dataset. Second, the data is preprocessed. Third, two-dimensional features are extracted. In the end, different methods like traditional machine learning, deep learning, and transfer learning are applied to classify heart sounds. Results: The results show that logmel and logpower can achieve a better effect than envelope and waveform, and the average accuracy is improved by 6–10%, which can achieve around 94%. F1 score shows a trend consistent with accuracy. This is verified by both machine learning and deep learning methods. Under the experimental conditions in this paper, transfer learning can promote the effect of Xception and MobileNet, the accuracy can improve by about 2% on time-domain features. The results of transfer learning are comparatively more stable, and more results are within the 95% confidence interval. Conclusion: This paper uses different methods to systematically compare the effects of different two-dimensional features in heart sound classification, and explains why different features achieve different effects from different perspectives such as clinical, and provides new insights like the application of feature fusion in it.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助悦耳曼凝采纳,获得10
刚刚
嗯嗯嗯完成签到,获得积分10
1秒前
Gin发布了新的文献求助10
2秒前
chaser完成签到,获得积分10
3秒前
BetterH完成签到 ,获得积分10
3秒前
3秒前
Zhang完成签到,获得积分20
3秒前
赫如冰发布了新的文献求助10
4秒前
不配.应助家伟采纳,获得20
5秒前
Worenxian完成签到,获得积分10
5秒前
小巧的寻双完成签到,获得积分10
6秒前
8秒前
9秒前
小马甲应助赫如冰采纳,获得10
9秒前
熊小子爱学习完成签到,获得积分10
10秒前
流砂完成签到,获得积分10
12秒前
12秒前
14秒前
忧郁绣连发布了新的文献求助10
15秒前
15秒前
培a发布了新的文献求助10
16秒前
17秒前
深情安青应助一一采纳,获得10
17秒前
selena完成签到 ,获得积分10
18秒前
科研通AI2S应助迪迪采纳,获得10
18秒前
今后应助迪迪采纳,获得10
18秒前
19秒前
Amon完成签到,获得积分10
19秒前
20秒前
汎影发布了新的文献求助10
22秒前
asd发布了新的文献求助10
22秒前
太阳发布了新的文献求助20
24秒前
selena关注了科研通微信公众号
24秒前
23完成签到,获得积分10
24秒前
25秒前
HUMBLE发布了新的文献求助10
25秒前
Owen应助能干的邹采纳,获得10
26秒前
27秒前
机智橘子完成签到,获得积分10
27秒前
李健的小迷弟应助草木采纳,获得10
29秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137977
求助须知:如何正确求助?哪些是违规求助? 2788907
关于积分的说明 7789001
捐赠科研通 2445272
什么是DOI,文献DOI怎么找? 1300255
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046