Research of heart sound classification using two-dimensional features

学习迁移 计算机科学 机器学习 特征(语言学) 波形 模式识别(心理学) 构造(python库) 人工智能 语言学 电信 哲学 程序设计语言 雷达
作者
Menghui Xiang,Junbin Zang,Juliang Wang,Haoxin Wang,Chenzheng Zhou,Ruiyu Bi,Zhidong Zhang,Chenyang Xue
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:79: 104190-104190 被引量:16
标识
DOI:10.1016/j.bspc.2022.104190
摘要

Heart sound plays a vital role to achieve an accurate diagnosis of cardiovascular diseases, and its auxiliary diagnosis methods have become a hotspot. Aim: In this paper, novel classification algorithms that transfer heart sound classification into image classification are proposed to select better features. The features used were all important in clinical diagnosis. Method: First, four open datasets are used to construct an integrated dataset. Second, the data is preprocessed. Third, two-dimensional features are extracted. In the end, different methods like traditional machine learning, deep learning, and transfer learning are applied to classify heart sounds. Results: The results show that logmel and logpower can achieve a better effect than envelope and waveform, and the average accuracy is improved by 6–10%, which can achieve around 94%. F1 score shows a trend consistent with accuracy. This is verified by both machine learning and deep learning methods. Under the experimental conditions in this paper, transfer learning can promote the effect of Xception and MobileNet, the accuracy can improve by about 2% on time-domain features. The results of transfer learning are comparatively more stable, and more results are within the 95% confidence interval. Conclusion: This paper uses different methods to systematically compare the effects of different two-dimensional features in heart sound classification, and explains why different features achieve different effects from different perspectives such as clinical, and provides new insights like the application of feature fusion in it.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杭啊发布了新的文献求助10
1秒前
曾经电源完成签到,获得积分10
2秒前
hx完成签到 ,获得积分10
2秒前
CAOHOU应助满眼星辰采纳,获得10
2秒前
3秒前
24816848完成签到,获得积分10
3秒前
陈道哥完成签到 ,获得积分10
3秒前
4秒前
三七完成签到,获得积分10
4秒前
zifeimo发布了新的文献求助10
4秒前
科研通AI2S应助冰冰采纳,获得10
5秒前
练习时长两年半应助冰冰采纳,获得10
5秒前
Happyness应助superspace采纳,获得30
5秒前
yuHS完成签到,获得积分10
5秒前
5秒前
quan发布了新的文献求助10
6秒前
7秒前
丫丫完成签到 ,获得积分10
7秒前
7秒前
阿嘉完成签到,获得积分10
7秒前
8秒前
彳亍完成签到,获得积分10
8秒前
断数循环完成签到,获得积分10
8秒前
阳光女孩完成签到,获得积分10
8秒前
liujj完成签到,获得积分10
9秒前
9秒前
bkagyin应助yuHS采纳,获得10
10秒前
10秒前
10秒前
赵浩宇发布了新的文献求助10
10秒前
李珂完成签到,获得积分10
11秒前
顺利紫山发布了新的文献求助10
12秒前
Serenity发布了新的文献求助10
13秒前
13秒前
wenhaw发布了新的文献求助10
13秒前
断数循环发布了新的文献求助10
14秒前
福star高照发布了新的文献求助10
15秒前
YY关闭了YY文献求助
16秒前
ppg123应助啦啦啦采纳,获得10
16秒前
初商拾陆发布了新的文献求助10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635