Research of heart sound classification using two-dimensional features

学习迁移 计算机科学 机器学习 特征(语言学) 波形 模式识别(心理学) 构造(python库) 人工智能 语言学 电信 哲学 程序设计语言 雷达
作者
Menghui Xiang,Junbin Zang,Juliang Wang,Haoxin Wang,Chenzheng Zhou,Ruiyu Bi,Zhidong Zhang,Chenyang Xue
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:79: 104190-104190 被引量:16
标识
DOI:10.1016/j.bspc.2022.104190
摘要

Heart sound plays a vital role to achieve an accurate diagnosis of cardiovascular diseases, and its auxiliary diagnosis methods have become a hotspot. Aim: In this paper, novel classification algorithms that transfer heart sound classification into image classification are proposed to select better features. The features used were all important in clinical diagnosis. Method: First, four open datasets are used to construct an integrated dataset. Second, the data is preprocessed. Third, two-dimensional features are extracted. In the end, different methods like traditional machine learning, deep learning, and transfer learning are applied to classify heart sounds. Results: The results show that logmel and logpower can achieve a better effect than envelope and waveform, and the average accuracy is improved by 6–10%, which can achieve around 94%. F1 score shows a trend consistent with accuracy. This is verified by both machine learning and deep learning methods. Under the experimental conditions in this paper, transfer learning can promote the effect of Xception and MobileNet, the accuracy can improve by about 2% on time-domain features. The results of transfer learning are comparatively more stable, and more results are within the 95% confidence interval. Conclusion: This paper uses different methods to systematically compare the effects of different two-dimensional features in heart sound classification, and explains why different features achieve different effects from different perspectives such as clinical, and provides new insights like the application of feature fusion in it.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
眨眼完成签到,获得积分10
2秒前
LL完成签到 ,获得积分10
4秒前
黑糖珍珠完成签到 ,获得积分10
5秒前
5秒前
5秒前
CL发布了新的文献求助10
6秒前
欢喜的采梦完成签到,获得积分10
7秒前
唐诗阅完成签到,获得积分10
8秒前
9秒前
10秒前
勤劳平彤发布了新的文献求助10
10秒前
顾矜应助坚强的鸡翅采纳,获得10
11秒前
12秒前
慈祥的夜安应助通通真行采纳,获得10
12秒前
CL完成签到,获得积分10
14秒前
李y梅子发布了新的文献求助10
15秒前
16秒前
16秒前
三分糖完成签到,获得积分20
17秒前
林泉发布了新的文献求助30
18秒前
18秒前
19秒前
mengshang完成签到,获得积分10
21秒前
酷波er应助bb采纳,获得10
21秒前
PG完成签到,获得积分10
21秒前
李雪瑞发布了新的文献求助10
22秒前
传奇3应助KHZhang采纳,获得10
22秒前
上官若男应助KHZhang采纳,获得10
22秒前
Owen应助KHZhang采纳,获得10
22秒前
外向渊思完成签到 ,获得积分10
23秒前
hynni完成签到,获得积分10
23秒前
一条鱼叫弗里登完成签到 ,获得积分10
23秒前
三分糖发布了新的文献求助10
24秒前
wanci应助科研通管家采纳,获得10
25秒前
领导范儿应助科研通管家采纳,获得10
25秒前
英俊的铭应助科研通管家采纳,获得10
25秒前
Orange应助科研通管家采纳,获得10
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5225925
求助须知:如何正确求助?哪些是违规求助? 4397578
关于积分的说明 13686733
捐赠科研通 4262055
什么是DOI,文献DOI怎么找? 2338915
邀请新用户注册赠送积分活动 1336294
关于科研通互助平台的介绍 1292263