Prediction of the freshness of horse mackerel (Trachurus japonicus) using E-nose, E-tongue, and colorimeter based on biochemical indexes analyzed during frozen storage of whole fish

马鲭 电子鼻 电子舌 色度计 相关系数 鳙鱼 数学 人工智能 食品科学 化学 统计 计算机科学 鲢鱼 渔业 生物 物理 量子力学 品味
作者
Hongyue Li,Xiaogang Wang,Jiaxin Zhang,Xuepeng Li,Jinxiang Wang,Shumin Yi,Wenhui Zhu,Yongxia Xu,Jianrong Li
出处
期刊:Food Chemistry [Elsevier]
卷期号:402: 134325-134325 被引量:51
标识
DOI:10.1016/j.foodchem.2022.134325
摘要

Electronic nose (E-nose), electronic tongue (E-tongue) and colorimeter combined with data fusion strategy and different machine learning algorithms (artificial neural network, ANN; extreme gradient boosting, XGBoost; random forest regression, RFR; support vector regression, SVR) were applied to quantitatively assess and predict the freshness of horse mackerel (Trachurus japonicus) during the 90-day frozen storage. The results showed that the fusion data of the E-nose, E-tongue and colorimeter could contain more information (with a total variance contribution rate of 94.734 %) than that of the independent one. ANN, RFR and XGBoost showed good performance in predicting biochemical indexes with the RP2 (the square correlation coefficient of the Test set) ≥ 0.929, 0.936, 0.888, respectively, while SVR models showed a bad performance (RP2 ≤ 0.835). In addition, among the established quantitative models, the RFR model had the best prediction effect on K value (freshness index) with Rp2 of 0.936, ANN model had the highest fitting degree in predicting carbonyl content (protein oxidation degree) with Rp2 of 0.978, XGBoost model had the best performance in predicting the TBA value (lipid oxidation degree) with Rp2 of 0.994, RFR model was the best strategy for predicting Ca2+-ATPase activity (protein denaturation degree) with Rp2 of 0.969. The results demonstrated that the freshness of frozen fish can be effectively evaluated and predicted by the combination of electronic sensor fusion signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
自信的海蓝完成签到 ,获得积分10
3秒前
香蕉觅云应助坚定的白薇采纳,获得10
3秒前
酷波er应助xuxingjie采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
云中应助科研通管家采纳,获得30
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
不配.应助科研通管家采纳,获得50
4秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
小二郎应助beibeimao采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
共享精神应助科研通管家采纳,获得10
5秒前
梓泽丘墟应助科研通管家采纳,获得20
5秒前
orixero应助科研通管家采纳,获得10
5秒前
盒子应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
慕青应助科研通管家采纳,获得10
5秒前
不配.应助科研通管家采纳,获得10
5秒前
hhh应助科研通管家采纳,获得10
6秒前
6秒前
易玖应助科研通管家采纳,获得10
6秒前
酷波er应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
小小学神发布了新的文献求助30
7秒前
7秒前
和谐板栗完成签到 ,获得积分10
7秒前
8秒前
8秒前
8秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160802
求助须知:如何正确求助?哪些是违规求助? 2811883
关于积分的说明 7893940
捐赠科研通 2470842
什么是DOI,文献DOI怎么找? 1315775
科研通“疑难数据库(出版商)”最低求助积分说明 631003
版权声明 602053