亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel energy consumption forecasting model combining an optimized DGM (1, 1) model with interval grey numbers

区间(图论) 消费(社会学) 能源消耗 人均 计量经济学 统计 数学 计算机科学 数学优化 运筹学 工程类 电气工程 社会学 组合数学 人口学 社会科学 人口
作者
Jing Ye,Yaoguo Dang,Song Ding,Yingjie Yang
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:229: 256-267 被引量:69
标识
DOI:10.1016/j.jclepro.2019.04.336
摘要

Since energy consumption (EC) is becoming an important issue for sustainable development in the world, it has a practical significance to predict EC effectively. However, there are two main uncertainty factors affecting the accuracy of a region's EC prediction. Firstly, with the ongoing rapid changes in society, the consumption amounts can be non-smooth or even fluctuating during a long time period, which makes it difficult to investigate the sequence's trend in order to forecast. Secondly, in a given region, it is difficult to express the consumption amount as a real number, as there are different development levels in the region, which would be more suitably described as interval numbers. Most traditional prediction models for energy consumption forecasting deal with long-term real numbers. It is seldom found to discover research that focuses specifically on uncertain EC data. To this end, a novel energy consumption forecasting model has been established by expressing ECs in a region as interval grey numbers combining with the optimized discrete grey model (DGM(1,1)) in Grey System Theory (GST). To prove the effectiveness of the method, per capita annual electricity consumption in southern Jiangsu of China is selected as an example. The results show that the proposed model reveals the best accuracy for the short data sequences (the average fitting error is only 2.19% and the average three-step forecasting error is less than 4%) compared with three GM models and four classical statistical models. By extension, any fields of EC, such as petroleum consumption, natural gas consumption, can also be predicted using this novel model. As the sustained growth in EC of China's, it is of great significance to predict EC accurately to manage serious energy security and environmental pollution problems, as well as formulating relevant energy policies by the government.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iuv关闭了iuv文献求助
26秒前
科研搬运工完成签到,获得积分10
42秒前
上官若男应助司空天德采纳,获得10
53秒前
iuv发布了新的文献求助10
1分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
1分钟前
今后应助kingqjack采纳,获得10
1分钟前
2分钟前
HudaBala发布了新的文献求助10
2分钟前
al完成签到 ,获得积分10
2分钟前
Wang完成签到 ,获得积分20
3分钟前
3分钟前
3分钟前
科研通AI2S应助yang采纳,获得10
3分钟前
NS完成签到,获得积分10
6分钟前
zsmj23完成签到 ,获得积分0
6分钟前
17852573662完成签到,获得积分10
6分钟前
6分钟前
隐形曼青应助FUNG采纳,获得10
6分钟前
火山完成签到 ,获得积分10
7分钟前
7分钟前
8分钟前
8分钟前
浮曳发布了新的文献求助10
8分钟前
zhouleiwang举报认真做科研求助涉嫌违规
9分钟前
9分钟前
司空天德发布了新的文献求助10
9分钟前
小蘑菇应助科研通管家采纳,获得10
9分钟前
李健应助浮曳采纳,获得10
9分钟前
9分钟前
10分钟前
10分钟前
10分钟前
Wu发布了新的文献求助10
10分钟前
FUNG发布了新的文献求助10
10分钟前
Wu完成签到,获得积分10
11分钟前
深情安青应助科研通管家采纳,获得10
11分钟前
11分钟前
11分钟前
11分钟前
zhouleiwang完成签到,获得积分10
11分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142703
求助须知:如何正确求助?哪些是违规求助? 2793574
关于积分的说明 7807032
捐赠科研通 2449892
什么是DOI,文献DOI怎么找? 1303518
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601328