催化作用
过电位
离解(化学)
氢化物
氢
电解质
化学工程
铂金
分解水
制氢
材料科学
无机化学
电解水
氢燃料
化学
纳米技术
电化学
电极
电解
物理化学
有机化学
工程类
光催化
作者
Cao‐Thang Dinh,Ankit Jain,F. Pelayo Garcı́a de Arquer,Phil De Luna,Jun Li,Ning Wang,Xueli Zheng,Jun Cai,Benjamin Z. Gregory,Oleksandr Voznyy,Bo Zhang,Min Liu,David Sinton,Ethan J. Crumlin,Edward H. Sargent
出处
期刊:Nature Energy
[Springer Nature]
日期:2018-11-27
卷期号:4 (2): 107-114
被引量:555
标识
DOI:10.1038/s41560-018-0296-8
摘要
High-performance hydrogen evolution reaction (HER) catalysts are compelling for the conversion of renewable electricity to fuels and feedstocks. The best HER catalysts rely on the use of platinum and show the highest performance in acidic media. Efficient HER catalysts based on inexpensive and Earth-abundant elements that operate in neutral (hence biocompatible) media could enable low-cost direct seawater splitting and the realization of bio-upgraded chemical fuels. In the challenging neutral-pH environment, water splitting is a multistep reaction. Here we present a HER catalyst comprising Ni and CrOx sites doped onto a Cu surface that operates efficiently in neutral media. The Ni and CrOx sites have strong binding energies for hydrogen and hydroxyl groups, respectively, which accelerates water dissociation, whereas the Cu has a weak hydrogen binding energy, promoting hydride coupling. The resulting catalyst exhibits a 48 mV overpotential at a current density of 10 mA cm−2 in a pH 7 buffer electrolyte. These findings suggest design principles for inexpensive, efficient and biocompatible catalytic systems. Integrating electrocatalytic H2 production with biological H2-fed systems for CO2 upgrading requires H2 generation to occur in biocompatible media—typically with neutral pH. Here, the authors design multi-site H2 evolution catalysts that minimize the water dissociation barrier and promote hydride coupling in neutral media.
科研通智能强力驱动
Strongly Powered by AbleSci AI