Quantifying Confidence in DFT-Predicted Surface Pourbaix Diagrams of Transition-Metal Electrode–Electrolyte Interfaces

Pourbaix图 化学 热力学 过渡金属 曲面(拓扑) 电解质 电化学 催化作用 物理化学 材料科学 无机化学 电极 数学 物理 几何学 有机化学
作者
Olga Vinogradova,Dilip Krishnamurthy,Vikram Pande,Venkatasubramanian Viswanathan
出处
期刊:Langmuir [American Chemical Society]
卷期号:34 (41): 12259-12269 被引量:86
标识
DOI:10.1021/acs.langmuir.8b02219
摘要

Density functional theory (DFT) calculations have been widely used to predict the activity of catalysts based on the free energies of reaction intermediates. The incorporation of the state of the catalyst surface under the electrochemical operating conditions while constructing the free-energy diagram is crucial, without which even trends in activity predictions could be imprecisely captured. Surface Pourbaix diagrams indicate the surface state as a function of the pH and the potential. In this work, we utilize error-estimation capabilities within the Bayesian ensemble error functional with van der Waals correlations exchange correlation functional as an ensemble approach to propagate the uncertainty associated with the adsorption energetics in the construction of Pourbaix diagrams. Within this approach, surface-transition phase boundaries are no longer sharp and are therefore associated with a finite width. We determine the surface phase diagram for several transition metals under reaction conditions and electrode potentials relevant for the oxygen reduction reaction. We observe that our surface phase predictions for most predominant species are in good agreement with cyclic voltammetry experiments and prior DFT studies. We use the OH* intermediate for comparing adsorption characteristics on Pt(111), Pt(100), Pd(111), Ir(111), Rh(111), and Ru(0001) since it has been shown to have a higher prediction efficiency relative to O*, and find the trend Ru > Rh > Ir > Pt > Pd for (111) metal facets, where Ru binds OH* the strongest. We robustly predict the likely surface phase as a function of reaction conditions by associating confidence values for quantifying the confidence in predictions within the Pourbaix diagram. We define a confidence quantifying metric, using which certain experimentally observed surface phases and peak assignments can be better rationalized. The probabilistic approach enables a more accurate determination of the surface structure and can readily be incorporated in computational studies for better understanding the catalyst surface under operating conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dl应助张真肇采纳,获得10
1秒前
3秒前
5秒前
retosure发布了新的文献求助10
5秒前
5秒前
wy.he完成签到,获得积分0
5秒前
5秒前
linmo完成签到,获得积分10
5秒前
8秒前
8秒前
linmo发布了新的文献求助10
10秒前
ding完成签到,获得积分10
10秒前
炙热的无心完成签到,获得积分10
11秒前
科研通AI2S应助搞怪的之云采纳,获得10
12秒前
米饭辣椒完成签到,获得积分10
12秒前
slb1319完成签到,获得积分10
13秒前
Jacky完成签到 ,获得积分20
13秒前
齐齐发布了新的文献求助10
13秒前
yanxuhuan发布了新的文献求助10
14秒前
神勇的秋珊完成签到,获得积分20
15秒前
15秒前
andylue完成签到,获得积分10
15秒前
轻松的鸿煊完成签到 ,获得积分10
16秒前
Evander完成签到,获得积分10
16秒前
17秒前
乐乐应助retosure采纳,获得10
18秒前
干净的海云完成签到 ,获得积分10
18秒前
雨齐发布了新的文献求助10
20秒前
珍珠发布了新的文献求助10
20秒前
归于晏完成签到,获得积分10
20秒前
JamesPei应助萱萱采纳,获得10
21秒前
23秒前
Damian完成签到,获得积分10
23秒前
hangzhen发布了新的文献求助10
24秒前
852应助wangting采纳,获得10
25秒前
orixero应助耍酷延恶采纳,获得10
26秒前
科研go应助joe采纳,获得30
26秒前
HH完成签到,获得积分10
27秒前
27秒前
完美世界应助齐齐采纳,获得10
30秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379616
求助须知:如何正确求助?哪些是违规求助? 4503889
关于积分的说明 14016933
捐赠科研通 4412719
什么是DOI,文献DOI怎么找? 2423913
邀请新用户注册赠送积分活动 1416795
关于科研通互助平台的介绍 1394372