Quantifying Confidence in DFT-Predicted Surface Pourbaix Diagrams of Transition-Metal Electrode–Electrolyte Interfaces

Pourbaix图 化学 密度泛函理论 热力学 吸附 过渡金属 工作职能 电解质 电化学 相图 电极电位 催化作用 物理化学 相(物质) 电极 计算化学 物理 生物化学 有机化学
作者
Olga I. Vinogradova,Dilip Krishnamurthy,Vikram Pande,Venkatasubramanian Viswanathan
出处
期刊:Langmuir [American Chemical Society]
卷期号:34 (41): 12259-12269 被引量:51
标识
DOI:10.1021/acs.langmuir.8b02219
摘要

Density functional theory (DFT) calculations have been widely used to predict the activity of catalysts based on the free energies of reaction intermediates. The incorporation of the state of the catalyst surface under the electrochemical operating conditions while constructing the free-energy diagram is crucial, without which even trends in activity predictions could be imprecisely captured. Surface Pourbaix diagrams indicate the surface state as a function of the pH and the potential. In this work, we utilize error-estimation capabilities within the Bayesian ensemble error functional with van der Waals correlations exchange correlation functional as an ensemble approach to propagate the uncertainty associated with the adsorption energetics in the construction of Pourbaix diagrams. Within this approach, surface-transition phase boundaries are no longer sharp and are therefore associated with a finite width. We determine the surface phase diagram for several transition metals under reaction conditions and electrode potentials relevant for the oxygen reduction reaction. We observe that our surface phase predictions for most predominant species are in good agreement with cyclic voltammetry experiments and prior DFT studies. We use the OH* intermediate for comparing adsorption characteristics on Pt(111), Pt(100), Pd(111), Ir(111), Rh(111), and Ru(0001) since it has been shown to have a higher prediction efficiency relative to O*, and find the trend Ru > Rh > Ir > Pt > Pd for (111) metal facets, where Ru binds OH* the strongest. We robustly predict the likely surface phase as a function of reaction conditions by associating confidence values for quantifying the confidence in predictions within the Pourbaix diagram. We define a confidence quantifying metric, using which certain experimentally observed surface phases and peak assignments can be better rationalized. The probabilistic approach enables a more accurate determination of the surface structure and can readily be incorporated in computational studies for better understanding the catalyst surface under operating conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
十三完成签到,获得积分10
1秒前
juan发布了新的文献求助10
1秒前
丘比特应助白小白采纳,获得10
1秒前
1秒前
晓军发布了新的文献求助20
1秒前
2秒前
zxl完成签到,获得积分10
3秒前
专心搞学术完成签到,获得积分10
3秒前
FFF发布了新的文献求助10
3秒前
李小胖发布了新的文献求助20
3秒前
李健应助故意的绿竹采纳,获得10
3秒前
勤恳的断秋完成签到 ,获得积分10
4秒前
VDC发布了新的文献求助10
4秒前
4秒前
jasmine970000发布了新的文献求助100
4秒前
酷波er应助camellia采纳,获得10
5秒前
Zoe发布了新的文献求助10
5秒前
5秒前
5秒前
啊实打实完成签到,获得积分10
5秒前
6秒前
6秒前
7秒前
参上完成签到,获得积分10
8秒前
mingjie完成签到,获得积分10
8秒前
yam001完成签到,获得积分10
8秒前
aaaaa发布了新的文献求助10
8秒前
9秒前
牧紫菱完成签到,获得积分10
9秒前
10秒前
研友_RLN0vZ发布了新的文献求助10
10秒前
10秒前
10秒前
神勇的雅香应助001采纳,获得10
11秒前
研友_V8RDYn完成签到,获得积分10
11秒前
zzznznnn发布了新的文献求助10
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762