Epilepsy Seizure Prediction on EEG Using Common Spatial Pattern and Convolutional Neural Network

发作性 计算机科学 卷积神经网络 人工智能 癫痫 脑电图 模式识别(心理学) 特征(语言学) 癫痫发作 灵敏度(控制系统) 深度学习 语音识别 心理学 神经科学 工程类 哲学 语言学 电子工程
作者
Yuwei Zhang,Yao Guo,Po Yang,Wei Chen,Benny Lo
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (2): 465-474 被引量:159
标识
DOI:10.1109/jbhi.2019.2933046
摘要

Epilepsy seizure prediction paves the way of timely warning for patients to take more active and effective intervention measures. Compared to seizure detection that only identifies the inter-ictal state and the ictal state, far fewer researches have been conducted on seizure prediction because the high similarity makes it challenging to distinguish between the pre-ictal state and the inter-ictal state. In this paper, a novel solution on seizure prediction is proposed using common spatial pattern (CSP) and convolutional neural network (CNN). Firstly, artificial preictal EEG signals based on the original ones are generated by combining the segmented pre-ictal signals to solve the trial imbalance problem between the two states. Secondly, a feature extractor employing wavelet packet decomposition and CSP is designed to extract the distinguishing features in both the time domain and the frequency domain. It can improve overall accuracy while reducing the training time. Finally, a shallow CNN is applied to discriminate between the pre-ictal state and the inter-ictal state. Our proposed solution is evaluated on 23 patients' data from Boston Children's Hospital-MIT scalp EEG dataset by employing a leave-one-out cross-validation, and it achieves a sensitivity of 92.2% and false prediction rate of 0.12/h. Experimental result demonstrates that the proposed approach outperforms most state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
PhH完成签到 ,获得积分10
1秒前
高兴的从梦完成签到,获得积分10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
4秒前
chanvze完成签到,获得积分10
5秒前
5秒前
脑洞疼应助985211采纳,获得10
5秒前
子衿青青发布了新的文献求助10
7秒前
斯文败类应助Vanessa采纳,获得10
7秒前
Yu应助丁丁峥采纳,获得10
9秒前
mmmm完成签到,获得积分10
9秒前
hhh发布了新的文献求助10
9秒前
静静地学习完成签到,获得积分10
10秒前
11秒前
CipherSage应助雪白发卡采纳,获得10
11秒前
syc应助藜藜藜在乎你采纳,获得10
12秒前
12秒前
13秒前
123完成签到,获得积分10
13秒前
霸气映之完成签到,获得积分10
14秒前
SYLH应助苗苗043采纳,获得20
15秒前
schen发布了新的文献求助30
16秒前
香蕉觅云应助原象采纳,获得10
16秒前
李博完成签到,获得积分10
16秒前
17秒前
17秒前
17秒前
打打应助Hoshiiii采纳,获得10
17秒前
18秒前
hope完成签到,获得积分10
19秒前
hhh完成签到,获得积分10
19秒前
雪雪完成签到 ,获得积分10
20秒前
21秒前
ZO发布了新的文献求助10
21秒前
闪闪茉莉发布了新的文献求助10
21秒前
22秒前
Erislastem完成签到,获得积分10
23秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979946
求助须知:如何正确求助?哪些是违规求助? 3524093
关于积分的说明 11219832
捐赠科研通 3261529
什么是DOI,文献DOI怎么找? 1800686
邀请新用户注册赠送积分活动 879263
科研通“疑难数据库(出版商)”最低求助积分说明 807226