词(群论)
计算机科学
相似性(几何)
集合(抽象数据类型)
向量空间
人工智能
任务(项目管理)
自然语言处理
空格(标点符号)
试验装置
语义相似性
向量空间模型
人工神经网络
数学
操作系统
图像(数学)
经济
管理
程序设计语言
几何学
作者
Tomáš Mikolov,Kai Chen,Greg S. Corrado,J. Michael Dean
出处
期刊:Cornell University - arXiv
日期:2013-01-16
被引量:6123
摘要
We propose two novel model architectures for computing continuous vector representations of words from very large data sets. The quality of these representations is measured in a word similarity task, and the results are compared to the previously best performing techniques based on different types of neural networks. We observe large improvements in accuracy at much lower computational cost, i.e. it takes less than a day to learn high quality word vectors from a 1.6 billion words data set. Furthermore, we show that these vectors provide state-of-the-art performance on our test set for measuring syntactic and semantic word similarities.
科研通智能强力驱动
Strongly Powered by AbleSci AI