临时护理
倦怠
鉴定(生物学)
服务(商务)
护理部
医疗保健
人工神经网络
计算机科学
医学
业务
机器学习
临床心理学
植物
生物
经济增长
经济
营销
作者
Oussama Batata,Vincent Augusto,Xiaolan Xie
出处
期刊:Winter Simulation Conference
日期:2018-12-09
卷期号:: 2668-2679
被引量:3
标识
DOI:10.5555/3320516.3320834
摘要
Respite care is a new service to decrease burnout risk of caregivers. Hospitalization related to caregivers burnout are costly and should be avoided. Pre-identification of caregivers with severe burnout is crucial to better manage respite care services through smart admission policies and health resources management. In this article we propose a mixed machine learning and agent-based simulation for respite care evaluation taking into account smart admission policies. Results show that neural networks approach demonstrate best results for burnout prediction and allows a significant decrease of undesirable hospitalizations when used as decision aid for admission control.
科研通智能强力驱动
Strongly Powered by AbleSci AI