Innovative Intelligent Methodology for the Classification of Soil Salinization Degree Using a Fractional-Order Master-Slave Chaotic System

土壤盐分 混乱的 吸引子 计算机科学 数学 环境科学 土壤科学 土壤水分 人工智能 数学分析
作者
Anhong Tian,Chengbiao Fu,Heigang Xiong,Her‐Terng Yau
出处
期刊:International Journal of Bifurcation and Chaos [World Scientific]
卷期号:29 (02): 1950026-1950026 被引量:5
标识
DOI:10.1142/s0218127419500263
摘要

Soil salinization has become a highly significant eco-system issue that is encountered all over the world. Serious soil salinization leads to soil deterioration and has a negative impact on sustainable development of the eco-system and agriculture. However, the spectral reflectance of soils with high overlap and indecipherability makes it difficult to classify the soil salinization degree quickly and accurately. In this paper, an innovative, intelligent methodology using a fractional-order chaotic system to classify the soil salinization degree is proposed. To select a suitable order for the fractional-order chaotic system, the integer-order and noninteger order master-slave Lorenz chaotic systems were used to observe variations in the phase plane distributions. Movement traces of the chaotic system show that severely saline soil will exhibit more active changes, and its distribution status of the Lorenz chaotic system will be more scattered. After analyzing the characteristics of phase plane distributions, a preferred 0.9 fractional-order chaotic system is selected to obtain good analytical characteristics. Finally, extenics theory is used to verify the accuracy of salinization status classified by the coordinate values of the chaotic attractors, and an extenic matter element model is established to analyze the salinization degree. From the results, it was found that 100% analysis accuracy in the judgment of salinization level could be achieved under noninteger order status, and this judgment method is also suitable for soils in different human activity areas. This method has now become a benchmark for testing soil salinization with a chaotic system and is an innovative method that can be used to test the soil salinization degree quickly and accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谦让冰真关注了科研通微信公众号
刚刚
1秒前
小蘑菇应助时光如梭采纳,获得10
1秒前
思源应助哦哦采纳,获得10
1秒前
李健应助热情的纸飞机采纳,获得10
2秒前
言灵鱼完成签到,获得积分20
3秒前
研友完成签到 ,获得积分10
3秒前
CodeCraft应助DAaaaa采纳,获得10
3秒前
jackie完成签到 ,获得积分10
4秒前
4秒前
Mr贱包子完成签到,获得积分10
4秒前
花怜完成签到 ,获得积分10
5秒前
5秒前
5秒前
言灵鱼发布了新的文献求助10
6秒前
7秒前
7秒前
Eden发布了新的文献求助10
11秒前
jiangfuuuu发布了新的文献求助10
11秒前
12秒前
哦哦发布了新的文献求助10
13秒前
虚幻寄文完成签到 ,获得积分10
14秒前
禾平完成签到 ,获得积分10
14秒前
活泼纲完成签到,获得积分10
15秒前
调研昵称发布了新的文献求助10
16秒前
叶绿体机智完成签到,获得积分10
17秒前
852应助熬夜的桃子采纳,获得10
18秒前
19秒前
wms发布了新的文献求助10
19秒前
20秒前
22秒前
下一秒的王完成签到,获得积分0
22秒前
24秒前
kk发布了新的文献求助10
25秒前
25秒前
学术菜菜完成签到,获得积分10
25秒前
26秒前
fafa发布了新的文献求助10
26秒前
明明发布了新的文献求助10
27秒前
Passskd发布了新的文献求助10
27秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161657
求助须知:如何正确求助?哪些是违规求助? 2812907
关于积分的说明 7897803
捐赠科研通 2471830
什么是DOI,文献DOI怎么找? 1316176
科研通“疑难数据库(出版商)”最低求助积分说明 631245
版权声明 602129