Innovative Intelligent Methodology for the Classification of Soil Salinization Degree Using a Fractional-Order Master-Slave Chaotic System

土壤盐分 混乱的 吸引子 计算机科学 数学 环境科学 土壤科学 土壤水分 人工智能 数学分析
作者
Anhong Tian,Chengbiao Fu,Heigang Xiong,Her‐Terng Yau
出处
期刊:International Journal of Bifurcation and Chaos [World Scientific]
卷期号:29 (02): 1950026-1950026 被引量:5
标识
DOI:10.1142/s0218127419500263
摘要

Soil salinization has become a highly significant eco-system issue that is encountered all over the world. Serious soil salinization leads to soil deterioration and has a negative impact on sustainable development of the eco-system and agriculture. However, the spectral reflectance of soils with high overlap and indecipherability makes it difficult to classify the soil salinization degree quickly and accurately. In this paper, an innovative, intelligent methodology using a fractional-order chaotic system to classify the soil salinization degree is proposed. To select a suitable order for the fractional-order chaotic system, the integer-order and noninteger order master-slave Lorenz chaotic systems were used to observe variations in the phase plane distributions. Movement traces of the chaotic system show that severely saline soil will exhibit more active changes, and its distribution status of the Lorenz chaotic system will be more scattered. After analyzing the characteristics of phase plane distributions, a preferred 0.9 fractional-order chaotic system is selected to obtain good analytical characteristics. Finally, extenics theory is used to verify the accuracy of salinization status classified by the coordinate values of the chaotic attractors, and an extenic matter element model is established to analyze the salinization degree. From the results, it was found that 100% analysis accuracy in the judgment of salinization level could be achieved under noninteger order status, and this judgment method is also suitable for soils in different human activity areas. This method has now become a benchmark for testing soil salinization with a chaotic system and is an innovative method that can be used to test the soil salinization degree quickly and accurately.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tom47发布了新的文献求助10
刚刚
1秒前
timick发布了新的文献求助10
1秒前
Einsree发布了新的文献求助10
3秒前
研友_8opMyL完成签到,获得积分10
3秒前
可爱的函函应助ashley采纳,获得10
5秒前
YFL发布了新的文献求助10
5秒前
思源应助zhixian采纳,获得10
5秒前
MchemG应助白开水采纳,获得20
5秒前
SciGPT应助sylus采纳,获得10
6秒前
hanqianqian发布了新的文献求助10
6秒前
所所应助小琪采纳,获得10
6秒前
yyanxuemin919发布了新的文献求助10
7秒前
Tom47完成签到,获得积分10
8秒前
timick完成签到,获得积分10
10秒前
13秒前
14秒前
hanqianqian完成签到,获得积分10
14秒前
Jasper应助泷生采纳,获得10
16秒前
111发布了新的文献求助10
17秒前
爆米花应助Liu采纳,获得10
19秒前
19秒前
Youdge完成签到 ,获得积分10
20秒前
嘿嘿发布了新的文献求助10
20秒前
认真初之发布了新的文献求助10
21秒前
领导范儿应助111采纳,获得10
22秒前
24秒前
25秒前
26秒前
科研通AI2S应助无尘采纳,获得10
28秒前
搜集达人应助无尘采纳,获得10
28秒前
Deadman完成签到,获得积分10
28秒前
嘿嘿发布了新的文献求助10
30秒前
壮观问寒发布了新的文献求助10
31秒前
好运加满完成签到 ,获得积分10
31秒前
乐乐应助科研通管家采纳,获得10
31秒前
完美世界应助科研通管家采纳,获得10
31秒前
华仔应助科研通管家采纳,获得10
31秒前
情怀应助科研通管家采纳,获得10
31秒前
浮游应助科研通管家采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563539
求助须知:如何正确求助?哪些是违规求助? 4648430
关于积分的说明 14684815
捐赠科研通 4590392
什么是DOI,文献DOI怎么找? 2518479
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432