Innovative Intelligent Methodology for the Classification of Soil Salinization Degree Using a Fractional-Order Master-Slave Chaotic System

土壤盐分 混乱的 吸引子 计算机科学 数学 环境科学 土壤科学 土壤水分 人工智能 数学分析
作者
Anhong Tian,Chengbiao Fu,Heigang Xiong,Her‐Terng Yau
出处
期刊:International Journal of Bifurcation and Chaos [World Scientific]
卷期号:29 (02): 1950026-1950026 被引量:5
标识
DOI:10.1142/s0218127419500263
摘要

Soil salinization has become a highly significant eco-system issue that is encountered all over the world. Serious soil salinization leads to soil deterioration and has a negative impact on sustainable development of the eco-system and agriculture. However, the spectral reflectance of soils with high overlap and indecipherability makes it difficult to classify the soil salinization degree quickly and accurately. In this paper, an innovative, intelligent methodology using a fractional-order chaotic system to classify the soil salinization degree is proposed. To select a suitable order for the fractional-order chaotic system, the integer-order and noninteger order master-slave Lorenz chaotic systems were used to observe variations in the phase plane distributions. Movement traces of the chaotic system show that severely saline soil will exhibit more active changes, and its distribution status of the Lorenz chaotic system will be more scattered. After analyzing the characteristics of phase plane distributions, a preferred 0.9 fractional-order chaotic system is selected to obtain good analytical characteristics. Finally, extenics theory is used to verify the accuracy of salinization status classified by the coordinate values of the chaotic attractors, and an extenic matter element model is established to analyze the salinization degree. From the results, it was found that 100% analysis accuracy in the judgment of salinization level could be achieved under noninteger order status, and this judgment method is also suitable for soils in different human activity areas. This method has now become a benchmark for testing soil salinization with a chaotic system and is an innovative method that can be used to test the soil salinization degree quickly and accurately.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助yuwen采纳,获得10
1秒前
2秒前
LIU完成签到 ,获得积分10
2秒前
杨春末完成签到,获得积分10
3秒前
lanshi完成签到,获得积分10
4秒前
wanci应助谦让的靖巧采纳,获得10
5秒前
玄魁发布了新的文献求助10
6秒前
木子李完成签到,获得积分10
6秒前
10秒前
11秒前
11秒前
oomph完成签到,获得积分10
12秒前
NexusExplorer应助mm采纳,获得10
13秒前
13秒前
koong完成签到,获得积分10
13秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
CodeCraft应助mark采纳,获得10
14秒前
疯狂的大闸蟹完成签到,获得积分10
15秒前
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
yuwen发布了新的文献求助10
15秒前
15秒前
15秒前
ding应助科研通管家采纳,获得30
16秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
刘丰恺发布了新的文献求助10
16秒前
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
koong发布了新的文献求助10
17秒前
17秒前
英俊的铭应助长情的芝麻采纳,获得10
17秒前
JamesPei应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675220
求助须知:如何正确求助?哪些是违规求助? 4944256
关于积分的说明 15152011
捐赠科研通 4834395
什么是DOI,文献DOI怎么找? 2589462
邀请新用户注册赠送积分活动 1543115
关于科研通互助平台的介绍 1501056