Innovative Intelligent Methodology for the Classification of Soil Salinization Degree Using a Fractional-Order Master-Slave Chaotic System

土壤盐分 混乱的 吸引子 计算机科学 数学 环境科学 土壤科学 土壤水分 人工智能 数学分析
作者
Anhong Tian,Chengbiao Fu,Heigang Xiong,Her‐Terng Yau
出处
期刊:International Journal of Bifurcation and Chaos [World Scientific]
卷期号:29 (02): 1950026-1950026 被引量:5
标识
DOI:10.1142/s0218127419500263
摘要

Soil salinization has become a highly significant eco-system issue that is encountered all over the world. Serious soil salinization leads to soil deterioration and has a negative impact on sustainable development of the eco-system and agriculture. However, the spectral reflectance of soils with high overlap and indecipherability makes it difficult to classify the soil salinization degree quickly and accurately. In this paper, an innovative, intelligent methodology using a fractional-order chaotic system to classify the soil salinization degree is proposed. To select a suitable order for the fractional-order chaotic system, the integer-order and noninteger order master-slave Lorenz chaotic systems were used to observe variations in the phase plane distributions. Movement traces of the chaotic system show that severely saline soil will exhibit more active changes, and its distribution status of the Lorenz chaotic system will be more scattered. After analyzing the characteristics of phase plane distributions, a preferred 0.9 fractional-order chaotic system is selected to obtain good analytical characteristics. Finally, extenics theory is used to verify the accuracy of salinization status classified by the coordinate values of the chaotic attractors, and an extenic matter element model is established to analyze the salinization degree. From the results, it was found that 100% analysis accuracy in the judgment of salinization level could be achieved under noninteger order status, and this judgment method is also suitable for soils in different human activity areas. This method has now become a benchmark for testing soil salinization with a chaotic system and is an innovative method that can be used to test the soil salinization degree quickly and accurately.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简单糜完成签到,获得积分10
1秒前
在水一方应助111采纳,获得10
1秒前
一笑生花完成签到,获得积分10
2秒前
2秒前
3秒前
科目三应助VickyS采纳,获得10
4秒前
112233发布了新的文献求助10
4秒前
不良帅完成签到,获得积分10
5秒前
NexusExplorer应助KX2024采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
汉堡包应助支凤妖采纳,获得10
7秒前
爆米花应助风趣的慕灵采纳,获得10
7秒前
十一发布了新的文献求助20
8秒前
彭冬华完成签到,获得积分10
8秒前
FashionBoy应助三鲜汤采纳,获得10
8秒前
深情安青应助sijietan采纳,获得10
9秒前
even完成签到,获得积分10
10秒前
SciGPT应助故意的鸿涛采纳,获得10
10秒前
10秒前
Akim应助orange采纳,获得10
11秒前
wwwwwwjh完成签到,获得积分10
11秒前
念念完成签到,获得积分10
12秒前
12秒前
小匀匀21完成签到,获得积分10
12秒前
sherrywuxh完成签到,获得积分10
13秒前
フー・ヘイ・ホイ完成签到,获得积分10
13秒前
LLL发布了新的文献求助10
14秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
wanci应助better采纳,获得10
14秒前
开心完成签到,获得积分10
15秒前
15秒前
18秒前
18秒前
烟花应助优美紫槐采纳,获得10
19秒前
19秒前
潘继坤发布了新的文献求助10
19秒前
114514关注了科研通微信公众号
20秒前
陈浩南xy完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729500
求助须知:如何正确求助?哪些是违规求助? 5318746
关于积分的说明 15316776
捐赠科研通 4876514
什么是DOI,文献DOI怎么找? 2619398
邀请新用户注册赠送积分活动 1568923
关于科研通互助平台的介绍 1525513