Innovative Intelligent Methodology for the Classification of Soil Salinization Degree Using a Fractional-Order Master-Slave Chaotic System

土壤盐分 混乱的 吸引子 计算机科学 数学 环境科学 土壤科学 土壤水分 人工智能 数学分析
作者
Anhong Tian,Chengbiao Fu,Heigang Xiong,Her‐Terng Yau
出处
期刊:International Journal of Bifurcation and Chaos [World Scientific]
卷期号:29 (02): 1950026-1950026 被引量:5
标识
DOI:10.1142/s0218127419500263
摘要

Soil salinization has become a highly significant eco-system issue that is encountered all over the world. Serious soil salinization leads to soil deterioration and has a negative impact on sustainable development of the eco-system and agriculture. However, the spectral reflectance of soils with high overlap and indecipherability makes it difficult to classify the soil salinization degree quickly and accurately. In this paper, an innovative, intelligent methodology using a fractional-order chaotic system to classify the soil salinization degree is proposed. To select a suitable order for the fractional-order chaotic system, the integer-order and noninteger order master-slave Lorenz chaotic systems were used to observe variations in the phase plane distributions. Movement traces of the chaotic system show that severely saline soil will exhibit more active changes, and its distribution status of the Lorenz chaotic system will be more scattered. After analyzing the characteristics of phase plane distributions, a preferred 0.9 fractional-order chaotic system is selected to obtain good analytical characteristics. Finally, extenics theory is used to verify the accuracy of salinization status classified by the coordinate values of the chaotic attractors, and an extenic matter element model is established to analyze the salinization degree. From the results, it was found that 100% analysis accuracy in the judgment of salinization level could be achieved under noninteger order status, and this judgment method is also suitable for soils in different human activity areas. This method has now become a benchmark for testing soil salinization with a chaotic system and is an innovative method that can be used to test the soil salinization degree quickly and accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tangchao完成签到,获得积分10
1秒前
橙子加油发布了新的文献求助10
1秒前
5秒前
圆圆懒羊羊完成签到,获得积分10
5秒前
小卷粉完成签到 ,获得积分10
5秒前
7秒前
激流勇进wb完成签到 ,获得积分10
7秒前
可爱的函函应助11采纳,获得10
7秒前
7秒前
8秒前
jjj应助科研通管家采纳,获得20
8秒前
8秒前
情怀应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得30
9秒前
大个应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
勿明应助科研通管家采纳,获得100
9秒前
畅快芝麻完成签到,获得积分10
9秒前
shulan发布了新的文献求助10
10秒前
宇宙猫发布了新的文献求助10
12秒前
欧欧欧导发布了新的文献求助10
12秒前
啃猫爪完成签到,获得积分10
13秒前
harry2021完成签到,获得积分10
13秒前
AronHUANG发布了新的文献求助10
14秒前
orixero应助hhan采纳,获得10
16秒前
CL完成签到,获得积分10
17秒前
19秒前
科研通AI2S应助Santas采纳,获得10
20秒前
上官若男应助很多事罚款采纳,获得20
20秒前
宇宙猫完成签到,获得积分10
21秒前
非我完成签到 ,获得积分10
23秒前
qinqiny完成签到 ,获得积分10
24秒前
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965813
求助须知:如何正确求助?哪些是违规求助? 3511146
关于积分的说明 11156382
捐赠科研通 3245736
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268