Statistical downscaling of precipitation using machine learning techniques

缩小尺度 降水 百分位 支持向量机 机器学习 环境科学 人工智能 气候学 人工神经网络 计算机科学 气象学 统计 数学 地理 地质学
作者
D. A. Sachindra,Kamal Ahmed,Md. Mamunur Rashid,Shamsuddin Shahid,B. J. C. Perera
出处
期刊:Atmospheric Research [Elsevier]
卷期号:212: 240-258 被引量:201
标识
DOI:10.1016/j.atmosres.2018.05.022
摘要

Statistical models were developed for downscaling reanalysis data to monthly precipitation at 48 observation stations scattered across the Australian State of Victoria belonging to wet, intermediate and dry climate regimes. Downscaling models were calibrated over the period 1950–1991 and validated over the period 1992–2014 for each calendar month, for each station, using 4 machine learning techniques, (1) Genetic Programming (GP), (2) Artificial Neural Networks (ANNs), (3) Support Vector Machine (SVM), and (4) Relevance Vector Machine (RVM). It was found that, irrespective of the climate regime and the machine learning technique, downscaling models tend to better simulate the average (compared to other statistics) and under-estimate the standard deviation and the maximum of the observed precipitation. Also, irrespective of the climate regime and the machine learning technique, at the majority of stations downscaling models showed an over-estimating trend of low to mid percentiles (i.e. below the 50th percentile) of precipitation and under-estimating trend of high percentiles of precipitation (i.e. above the 90th percentile). The over-estimating trend of low to mid percentiles of precipitation was more pronounced at stations located in dryer climate, irrespective of the machine learning technique. Based on the results of this investigation the use of RVM or ANN over SVM or GP for developing downscaling models can be recommended for a study such as flood prediction which involves the consideration of high extremes of precipitation. Also, RVM can be recommended over GP, ANN or SVM in developing downscaling models for a study such as drought analysis which involves the consideration of low extremes of precipitation. Furthermore, it was found that irrespective of the climate regime, the SVM and RVM-based precipitation downscaling models showed the best performance with the Polynomial kernel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pylchm完成签到,获得积分10
1秒前
1秒前
MiYinZzz完成签到,获得积分10
2秒前
科研辉完成签到,获得积分10
2秒前
Lmy发布了新的文献求助10
2秒前
科目三应助小瓦片采纳,获得10
2秒前
4秒前
5秒前
6秒前
Ande完成签到,获得积分10
6秒前
pylchm发布了新的文献求助10
9秒前
FF完成签到,获得积分10
9秒前
星辰大海应助HhhhL采纳,获得10
9秒前
陈陈完成签到 ,获得积分10
9秒前
科研辉发布了新的文献求助10
10秒前
11秒前
神勇的秋发布了新的文献求助10
11秒前
11秒前
12秒前
小郑好好搞科研完成签到,获得积分10
13秒前
77不88完成签到 ,获得积分10
14秒前
Yara.H发布了新的文献求助20
14秒前
LL发布了新的文献求助10
15秒前
无花果应助鸣蜩十三采纳,获得10
16秒前
tangyong完成签到,获得积分10
16秒前
18秒前
鱼鱼发布了新的文献求助10
18秒前
发条完成签到,获得积分20
19秒前
慕青应助科研通管家采纳,获得10
19秒前
Ava应助科研通管家采纳,获得10
19秒前
CipherSage应助科研通管家采纳,获得10
19秒前
19秒前
传奇3应助科研通管家采纳,获得30
19秒前
无花果应助科研通管家采纳,获得10
19秒前
丘比特应助科研通管家采纳,获得10
19秒前
深情安青应助科研通管家采纳,获得10
19秒前
深情安青应助科研通管家采纳,获得10
20秒前
英姑应助科研通管家采纳,获得10
20秒前
Hello应助科研通管家采纳,获得10
20秒前
Ava应助科研通管家采纳,获得10
20秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160303
求助须知:如何正确求助?哪些是违规求助? 2811427
关于积分的说明 7892391
捐赠科研通 2470463
什么是DOI,文献DOI怎么找? 1315585
科研通“疑难数据库(出版商)”最低求助积分说明 630884
版权声明 602038