Statistical downscaling of precipitation using machine learning techniques

缩小尺度 降水 百分位 支持向量机 机器学习 环境科学 人工智能 气候学 人工神经网络 计算机科学 气象学 统计 数学 地理 地质学
作者
D. A. Sachindra,Kamal Ahmed,Md. Mamunur Rashid,Shamsuddin Shahid,B. J. C. Perera
出处
期刊:Atmospheric Research [Elsevier]
卷期号:212: 240-258 被引量:201
标识
DOI:10.1016/j.atmosres.2018.05.022
摘要

Statistical models were developed for downscaling reanalysis data to monthly precipitation at 48 observation stations scattered across the Australian State of Victoria belonging to wet, intermediate and dry climate regimes. Downscaling models were calibrated over the period 1950–1991 and validated over the period 1992–2014 for each calendar month, for each station, using 4 machine learning techniques, (1) Genetic Programming (GP), (2) Artificial Neural Networks (ANNs), (3) Support Vector Machine (SVM), and (4) Relevance Vector Machine (RVM). It was found that, irrespective of the climate regime and the machine learning technique, downscaling models tend to better simulate the average (compared to other statistics) and under-estimate the standard deviation and the maximum of the observed precipitation. Also, irrespective of the climate regime and the machine learning technique, at the majority of stations downscaling models showed an over-estimating trend of low to mid percentiles (i.e. below the 50th percentile) of precipitation and under-estimating trend of high percentiles of precipitation (i.e. above the 90th percentile). The over-estimating trend of low to mid percentiles of precipitation was more pronounced at stations located in dryer climate, irrespective of the machine learning technique. Based on the results of this investigation the use of RVM or ANN over SVM or GP for developing downscaling models can be recommended for a study such as flood prediction which involves the consideration of high extremes of precipitation. Also, RVM can be recommended over GP, ANN or SVM in developing downscaling models for a study such as drought analysis which involves the consideration of low extremes of precipitation. Furthermore, it was found that irrespective of the climate regime, the SVM and RVM-based precipitation downscaling models showed the best performance with the Polynomial kernel.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大河细流完成签到,获得积分10
刚刚
传奇3应助tian采纳,获得30
刚刚
还活着发布了新的文献求助10
1秒前
zzzzz完成签到,获得积分10
1秒前
4秒前
6秒前
爱听歌的丹琴完成签到,获得积分10
6秒前
9秒前
喜悦的依琴完成签到,获得积分10
10秒前
枫枫829完成签到,获得积分10
10秒前
泽2011发布了新的文献求助30
11秒前
iu完成签到,获得积分10
13秒前
希望天下0贩的0应助aaa采纳,获得10
14秒前
水镜完成签到,获得积分10
14秒前
tian发布了新的文献求助30
15秒前
15秒前
15秒前
天天快乐应助敬鱼采纳,获得10
18秒前
NexusExplorer应助枫枫829采纳,获得10
19秒前
19秒前
20秒前
20秒前
Metbutterly完成签到,获得积分10
21秒前
NUS完成签到,获得积分10
21秒前
21秒前
开花完成签到,获得积分10
21秒前
hymmm完成签到,获得积分10
22秒前
22秒前
会盟完成签到 ,获得积分10
23秒前
0231完成签到,获得积分10
23秒前
Metbutterly发布了新的文献求助10
23秒前
cx2683693878发布了新的文献求助10
23秒前
小七完成签到,获得积分10
24秒前
西风漂流完成签到,获得积分10
25秒前
kitsch完成签到 ,获得积分10
25秒前
25秒前
开花发布了新的文献求助10
25秒前
彭于晏应助单薄的发卡采纳,获得10
27秒前
小七发布了新的文献求助10
27秒前
aaa发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603867
求助须知:如何正确求助?哪些是违规求助? 4688768
关于积分的说明 14855984
捐赠科研通 4695232
什么是DOI,文献DOI怎么找? 2541009
邀请新用户注册赠送积分活动 1507143
关于科研通互助平台的介绍 1471814