Statistical downscaling of precipitation using machine learning techniques

缩小尺度 降水 百分位 支持向量机 机器学习 环境科学 人工智能 气候学 人工神经网络 计算机科学 气象学 统计 数学 地理 地质学
作者
D. A. Sachindra,Kamal Ahmed,Md. Mamunur Rashid,Shamsuddin Shahid,B. J. C. Perera
出处
期刊:Atmospheric Research [Elsevier BV]
卷期号:212: 240-258 被引量:201
标识
DOI:10.1016/j.atmosres.2018.05.022
摘要

Statistical models were developed for downscaling reanalysis data to monthly precipitation at 48 observation stations scattered across the Australian State of Victoria belonging to wet, intermediate and dry climate regimes. Downscaling models were calibrated over the period 1950–1991 and validated over the period 1992–2014 for each calendar month, for each station, using 4 machine learning techniques, (1) Genetic Programming (GP), (2) Artificial Neural Networks (ANNs), (3) Support Vector Machine (SVM), and (4) Relevance Vector Machine (RVM). It was found that, irrespective of the climate regime and the machine learning technique, downscaling models tend to better simulate the average (compared to other statistics) and under-estimate the standard deviation and the maximum of the observed precipitation. Also, irrespective of the climate regime and the machine learning technique, at the majority of stations downscaling models showed an over-estimating trend of low to mid percentiles (i.e. below the 50th percentile) of precipitation and under-estimating trend of high percentiles of precipitation (i.e. above the 90th percentile). The over-estimating trend of low to mid percentiles of precipitation was more pronounced at stations located in dryer climate, irrespective of the machine learning technique. Based on the results of this investigation the use of RVM or ANN over SVM or GP for developing downscaling models can be recommended for a study such as flood prediction which involves the consideration of high extremes of precipitation. Also, RVM can be recommended over GP, ANN or SVM in developing downscaling models for a study such as drought analysis which involves the consideration of low extremes of precipitation. Furthermore, it was found that irrespective of the climate regime, the SVM and RVM-based precipitation downscaling models showed the best performance with the Polynomial kernel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
查丽完成签到 ,获得积分10
5秒前
7秒前
8秒前
Tyranny完成签到 ,获得积分10
10秒前
股价发布了新的文献求助10
12秒前
绯九完成签到,获得积分10
14秒前
香蕉觅云应助股价采纳,获得10
16秒前
君看一叶舟完成签到 ,获得积分10
18秒前
SONGYEZI完成签到,获得积分0
33秒前
邵翎365发布了新的文献求助10
37秒前
机灵映雁完成签到 ,获得积分10
37秒前
Nic完成签到,获得积分10
44秒前
sunshine发布了新的文献求助10
49秒前
CLTTTt完成签到,获得积分10
54秒前
阜睿完成签到 ,获得积分10
54秒前
59秒前
卞卞完成签到,获得积分10
1分钟前
1分钟前
火星上小土豆完成签到 ,获得积分10
1分钟前
爱撒娇的孤丹完成签到 ,获得积分10
1分钟前
xc完成签到,获得积分10
1分钟前
CHANG完成签到 ,获得积分10
1分钟前
陈海明发布了新的文献求助10
1分钟前
pep完成签到 ,获得积分10
1分钟前
科研小哥完成签到,获得积分10
1分钟前
小谭完成签到 ,获得积分10
1分钟前
连难胜完成签到 ,获得积分10
1分钟前
友好语风完成签到,获得积分10
1分钟前
陈海明完成签到,获得积分10
1分钟前
ikun0000完成签到,获得积分10
1分钟前
她的城完成签到,获得积分0
1分钟前
1分钟前
ding应助烂漫的汲采纳,获得10
1分钟前
胡杨发布了新的文献求助10
1分钟前
Wmhan完成签到 ,获得积分10
1分钟前
寇婧怡完成签到 ,获得积分10
1分钟前
股价发布了新的文献求助10
1分钟前
糊涂涂完成签到 ,获得积分10
1分钟前
烂漫的汲完成签到,获得积分10
1分钟前
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965769
求助须知:如何正确求助?哪些是违规求助? 3510991
关于积分的说明 11155985
捐赠科研通 3245486
什么是DOI,文献DOI怎么找? 1793074
邀请新用户注册赠送积分活动 874215
科研通“疑难数据库(出版商)”最低求助积分说明 804255