材料科学
氧化物
锂(药物)
纳米纤维
化学工程
纳米复合材料
阳极
滤纸
金属
水溶液中的金属离子
纤维素纤维
多孔性
纤维素
纳米技术
纤维
电极
复合材料
化学
冶金
物理化学
内分泌学
工程类
医学
作者
Zehao Lin,Shun Li,Jianguo Huang
标识
DOI:10.1002/tcr.201900030
摘要
Abstract Bio‐inspired synthetic method provides an effective shortcut to fabricate functional nanostructured materials with specific morphologies and designed functionalities. Natural cellulose substances (e. g., commercial laboratory cellulose filter paper) possesses unique three‐dimensionally cross‐linked porous structures and abundant functional groups for the functional modification on the surfaces. The deposition of metal oxide gel film on the surfaces of the cellulose nanofibers is facilely to be achieved through the surface sol‐gel process, resulting in metal oxide replicas of the initial cellulose substance or metal‐oxide/carbon nanocomposites. Moreover, the as‐deposited metal oxide gel films coated on the cellulose fiber surfaces provide ideal platforms for the further formation of specific functional assemblies, and eventually to the corresponding nanocomposite materials. Based on this methodology, various nanostructured composites were prepared and employed as anodic materials for lithium‐ion batteries, including metal‐oxides‐based (such as SnO 2 , TiO 2 , MoO 3 , Fe x O y , and SiO 2 ) and Si‐based composites, as summarized in this personal account. Benefiting from the unique hierarchically porous network structures and the synergistic effects among the composite components of the anodic materials, the transfer of electrons/ions is accelerated and the structural stability of the electrode is enhanced, leading to the improved lithium storage performances and promoted cycling stability.
科研通智能强力驱动
Strongly Powered by AbleSci AI