材料科学
电极
锂(药物)
电化学
佩多:嘘
阳极
电池(电)
纳米技术
导电聚合物
化学工程
聚合物
复合材料
化学
图层(电子)
功率(物理)
物理化学
内分泌学
工程类
物理
医学
量子力学
作者
Svetlana N. Eliseeva,Mikhail A. Kamenskii,E. G. Tolstopyatova,V. V. Kondratiev
出处
期刊:Energies
[MDPI AG]
日期:2020-05-01
卷期号:13 (9): 2163-2163
被引量:20
摘要
The electrodes of lithium-ion batteries (LIBs) are multicomponent systems and their electrochemical properties are influenced by each component, therefore the composition of electrodes should be properly balanced. At the beginning of lithium-ion battery research, most attention was paid to the nature, size, and morphology peculiarities of inorganic active components as the main components which determine the functional properties of electrode materials. Over the past decade, considerable attention has been paid to development of new binders, as the binders have shown great effect on the electrochemical performance of electrodes in LIBs. The study of new conductive binders, in particular water-based binders with enhanced electronic and ionic conductivity, has become a trend in the development of new electrode materials, especially the conversion/alloying-type anodes. This mini-review provides a summary on the progress of current research of the effects of binders on the electrochemical properties of intercalation electrodes, with particular attention to the mechanisms of binder effects. The comparative analysis of effects of three different binders (PEDOT:PSS/CMC, CMC, and PVDF) for a number of oxide-based and phosphate-based positive and negative electrodes for lithium-ion batteries was performed based on literature and our own published research data. It reveals that the combined PEDOT:PSS/CMC binder can be considered as a versatile component of lithium-ion battery electrode materials (for both positive and negative electrodes), effective in the wide range of electrode potentials.
科研通智能强力驱动
Strongly Powered by AbleSci AI