自适应步长
应用数学
鉴定(生物学)
梯度下降
订单(交换)
下降(航空)
计算机科学
数学
数值分析
数学优化
算法
数学分析
物理
人工智能
人工神经网络
植物
生物
气象学
经济
财务
作者
Jianjun Liu,Rui Zhai,Yuhan Liu,Wenliang Li,Bingzhe Wang,Liyuan Huang
标识
DOI:10.1016/j.amc.2020.125797
摘要
Abstract In this paper, the fractional order gradient method (FOGM) is extended to the solution of high-dimensional function optimization problems. A quasi fractional order gradient descent method (QFOGDM) is proposed and then introduce an adaptive stepsize into QFOGDM. The theoretic analysis for convergence of QFOGDM is be done by three theorems. The numerical experiments for solving 15 unconstrained optimization benchmarks are compared to show its’ better performance. Meanwhile, the proposed algorithm is utilized to identify the parameters in the linear discrete deterministic systems and achieves a better convergence rate and accuracy.
科研通智能强力驱动
Strongly Powered by AbleSci AI