伤口愈合
伤口敷料
肉芽组织
伤口闭合
材料科学
收缩(语法)
生物医学工程
医学
自愈水凝胶
外科
复合材料
高分子化学
内科学
作者
Meng Li,Yongping Liang,Jiahui He,Hualei Zhang,Baolin Guo
标识
DOI:10.1021/acs.chemmater.0c02823
摘要
A two-pronged strategy of biomechanically active and biochemically functional hydrogel wound dressing which can assist wound closure and have multiple functions to promote wound healing has been rarely reported. Herein, we designed a series of biomechanically active injectable self-healing hydrogels based on quaternized chitosan (QCS), polydopamine-coated reduction graphene oxide (rGO-PDA), and poly(N-isopropylacrylamide) (PNIPAm) as multifunctional wound dressings to promote wound closure and wound healing. These biomechanically active wound dressings have excellent thermoresponsive self-contraction and tissue adhesion properties. They adhere strongly to the skin and assist wound closure by actively contracting wounds through self-contraction. Moreover, these hydrogels exhibit biochemical multifunctions that are beneficial to wound healing, including good self-healing property, temperature-dependent drug release ability, anti-infection, antioxidation, and conductivity. The in vivo full-thickness skin defect model demonstrates that the hydrogel dressings significantly promoted wound closure with accelerated wound contraction and promoted the wound-healing process with higher granulation tissue thickness, collagen disposition, and enhanced vascularization. In summary, the biomechanically active injectable self-healing conductive adhesive hydrogels promoted wound healing by assisting wound closure and biochemical functions, opening a two-pronged strategy approach to wound management through combining biomechanical and biochemical functions together.
科研通智能强力驱动
Strongly Powered by AbleSci AI